首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The entanglement-assisted classical capacity of a quantum channel is known to provide the formal quantum generalization of Shannon’s classical channel capacity theorem, in the sense that it admits a single-letter characterization in terms of the quantum mutual information and does not increase in the presence of a noiseless quantum feedback channel from receiver to sender. In this work, we investigate second-order asymptotics of the entanglement-assisted classical communication task. That is, we consider how quickly the rates of entanglement-assisted codes converge to the entanglement-assisted classical capacity of a channel as a function of the number of channel uses and the error tolerance. We define a quantum generalization of the mutual information variance of a channel in the entanglement-assisted setting. For covariant channels, we show that this quantity is equal to the channel dispersion and thus completely characterize the convergence toward the entanglement-assisted classical capacity when the number of channel uses increases. Our results also apply to entanglement-assisted quantum communication, due to the equivalence between entanglement-assisted classical and quantum communication established by the teleportation and super-dense coding protocols.  相似文献   

2.
This paper strengthens the interpretation and understanding of the classical capacity of the pure-loss bosonic channel, first established in [1]. In particular, we first prove that there exists a trade-off between communication rate and error probability if one imposes only a mean photon number constraint on the channel inputs. That is, if we demand that the mean number of photons at the channel input cannot be any larger than some positive number NS, then it is possible to respect this constraint with a code that operates at a rate g(ηNS/(1-p)) where p is the code error probability, η is the channel transmissivity, and g(x) is the entropy of a bosonic thermal state with mean photon number x. Then we prove that a strong converse theorem holds for the classical capacity of this channel (that such a rate-error trade-off cannot occur) if one instead demands for a maximum photon number constraint, in such a way that mostly all of the “shadow” of the average density operator for a given code is required to be on a subspace with photon number no larger than nNS, so that the shadow outside this subspace vanishes as the number n of channel uses becomes large. Finally, we prove that a small modification of the well-known coherent-state coding scheme meets this more demanding constraint.  相似文献   

3.
A coding theorem for entanglement-assisted communication via an infinite-dimensional quantum channel with linear constraints is extended to a natural degree of generality. Relations between the entanglement-assisted classical capacity and χ-capacity of constrained channels are obtained, and conditions for their coincidence are given. Sufficient conditions for continuity of the entanglement-assisted classical capacity as a function of a channel are obtained. Some applications of the obtained results to analysis of Gaussian channels are considered. A general (continuous) version of the fundamental relation between coherent information and the measure of privacy of classical information transmission via an infinite-dimensional quantum channel is proved.  相似文献   

4.
Bennett et al. showed that allowing shared entanglement between a sender and receiver before communication begins dramatically simplifies the theory of quantum channels, and these results suggest that it would be worthwhile to study other scenarios for entanglement-assisted classical communication. In this vein, the present paper makes several contributions to the theory of entanglement-assisted classical communication. First, we rephrase the Giovannetti–Lloyd–Maccone sequential decoding argument as a more general “packing lemma” and show that it gives an alternate way of achieving the entanglement-assisted classical capacity. Next, we show that a similar sequential decoder can achieve the Hsieh–Devetak–Winter region for entanglement-assisted classical communication over a multiple access channel. Third, we prove the existence of a quantum simultaneous decoder for entanglement-assisted classical communication over a multiple access channel with two senders. This result implies a solution of the quantum simultaneous decoding conjecture for unassisted classical communication over quantum multiple access channels with two senders, but the three-sender case still remains open (Sen recently and independently solved this unassisted two-sender case with a different technique). We then leverage this result to recover the known regions for unassisted and assisted quantum communication over a quantum multiple access channel, though our proof exploits a coherent quantum simultaneous decoder. Finally, we determine an achievable rate region for communication over an entanglement-assisted bosonic multiple access channel and compare it with the Yen-Shapiro outer bound for unassisted communication over the same channel.  相似文献   

5.
Quantum entanglement can be used in a communication scheme to establish a correlation between successive channel inputs that is impossible by classical means. It is known that the classical capacity of quantum channels can be enhanced by such entangled encoding schemes, but this is not always the case. In this paper, we prove that a strong converse theorem holds for the classical capacity of an entanglement-breaking channel even when it is assisted by a classical feedback link from the receiver to the transmitter. In doing so, we identify a bound on the strong converse exponent, which determines the exponentially decaying rate at which the success probability tends to zero, for a sequence of codes with communication rate exceeding capacity. Proving a strong converse, along with an achievability theorem, shows that the classical capacity is a sharp boundary between reliable and unreliable communication regimes. One of the main tools in our proof is the sandwiched Rényi relative entropy. The same method of proof is used to derive an exponential bound on the success probability when communicating over an arbitrary quantum channel assisted by classical feedback, provided that the transmitter does not use entangled encoding schemes.  相似文献   

6.
We consider three different communication tasks for quantum broadcast channels, and we determine the capacity region of a Hadamard broadcast channel for these various tasks. We define a Hadamard broadcast channel to be such that the channel from the sender to one of the receivers is entanglement-breaking and the channel from the sender to the other receiver is complementary to this one. As such, this channel is a quantum generalization of a degraded broadcast channel, which is well known in classical information theory. The first communication task we consider is classical communication to both receivers, the second is quantum communication to the stronger receiver and classical communication to other, and the third is entanglement-assisted classical communication to the stronger receiver and unassisted classical communication to the other. The structure of a Hadamard broadcast channel plays a critical role in our analysis: The channel to the weaker receiver can be simulated by performing a measurement channel on the stronger receiver’s system, followed by a preparation channel. As such, we can incorporate the classical output of the measurement channel as an auxiliary variable and solve all three of the above capacities for Hadamard broadcast channels, in this way avoiding known difficulties associated with quantum auxiliary variables.  相似文献   

7.
Collins and Popescu realized a powerful analogy between several resources in classical and quantum information theory. The Collins?CPopescu analogy states that public classical communication, private classical communication, and secret key interact with one another somewhat similarly to the way that classical communication, quantum communication, and entanglement interact. This paper discusses the information-theoretic treatment of this analogy for the case of noisy quantum channels. We determine a capacity region for a quantum channel interacting with the noiseless resources of public classical communication, private classical communication, and secret key. We then compare this region with the classical-quantum-entanglement region from our prior efforts and explicitly observe the information-theoretic consequences of the strong correlations in entanglement and the lack of a super-dense coding protocol in the public-private-secret-key setting. The region simplifies for several realistic, physically-motivated channels such as entanglement-breaking channels, Hadamard channels, and quantum erasure channels, and we are able to compute and plot the region for several examples of these channels.  相似文献   

8.
The dynamic capacity theorem characterizes the reliable communication rates of a quantum channel when combined with the noiseless resources of classical communication, quantum communication, and entanglement. In prior work, we proved the converse part of this theorem by making contact with many previous results in the quantum Shannon theory literature. In this work, we prove the theorem with an ??ab initio?? approach, using only the most basic tools in the quantum information theorist??s toolkit: the Alicki-Fannes?? inequality, the chain rule for quantum mutual information, elementary properties of quantum entropy, and the quantum data processing inequality. The result is a simplified proof of the theorem that should be more accessible to those unfamiliar with the quantum Shannon theory literature. We also demonstrate that the ??quantum dynamic capacity formula?? characterizes the Pareto optimal trade-off surface for the full dynamic capacity region. Additivity of this formula reduces the computation of the trade-off surface to a tractable, textbook problem in Pareto trade-off analysis, and we prove that its additivity holds for the quantum Hadamard channels and the quantum erasure channel. We then determine exact expressions for and plot the dynamic capacity region of the quantum dephasing channel, an example from the Hadamard class, and the quantum erasure channel.  相似文献   

9.
Self-stabilizing systems have the ability to converge to a correct behavior when started in any configuration. Most of the work done so far in the self-stabilization area assumed either communication via shared memory or via FIFO channels.This paper is the first to lay the bases for the design of self-stabilizing message passing algorithms over unreliable non-FIFO channels. We propose an optimal stabilizing data-link layer that emulates a reliable FIFO communication channel over unreliable capacity bounded non-FIFO channels (the channel capacity is known to the protocol).  相似文献   

10.
We derive a lower bound on the secrecy capacity of a compound wiretap channel with channel state information at the transmitter which matches the general upper bound on the secrecy capacity of general compound wiretap channels given by Liang et al. [1], thus establishing a full coding theorem in this case. We achieve this with a stronger secrecy criterion and the maximum error probability criterion, and with a decoder that is robust against the effect of randomization in the encoding. This relieves us from the need of decoding the randomization parameter, which is in general impossible within this model. Moreover, we prove a lower bound on the secrecy capacity of a compound wiretap channel without channel state information and derive a multiletter expression for the capacity in this communication scenario.  相似文献   

11.
We demonstrate a fashion of quantum channel combining and splitting, called polar quantum channel coding, to generate a quantum bit (qubit) sequence that achieves the symmetric capacity for any given binary input discrete quantum channels. The present capacity is achievable subject to input of arbitrary qubits with equal probability. The polarizing quantum channels can be well-conditioned for quantum error-correction coding, which transmits partially quantum data through some channels at rate one with the symmetric capacity near one but at rate zero through others.  相似文献   

12.
The classical-input quantum-output (cq) wiretap channel is a communication model involving a classical sender X, a legitimate quantum receiver B, and a quantum eavesdropper E. The goal of a private communication protocol that uses such a channel is for the sender X to transmit a message in such a way that the legitimate receiver B can decode it reliably, while the eavesdropper E learns essentially nothing about which message was transmitted. The \(\varepsilon \)-one-shot private capacity of a cq wiretap channel is equal to the maximum number of bits that can be transmitted over the channel, such that the privacy error is no larger than \(\varepsilon \in (0,1)\). The present paper provides a lower bound on the \(\varepsilon \)-one-shot private classical capacity, by exploiting the recently developed techniques of Anshu, Devabathini, Jain, and Warsi, called position-based coding and convex splitting. The lower bound is equal to a difference of the hypothesis testing mutual information between X and B and the “alternate” smooth max-information between X and E. The one-shot lower bound then leads to a non-trivial lower bound on the second-order coding rate for private classical communication over a memoryless cq wiretap channel.  相似文献   

13.
In this article, we study the problem of controlling plants over a signal-to-noise ratio (SNR) constrained communication channel. Different from previous research, this article emphasises the importance of the actual channel model and coder/decoder in the study of network performance. Our major objectives include coder/decoder design for an additive white Gaussian noise (AWGN) channel with both standard network configuration and Youla parameter network architecture. We find that the optimal coder and decoder can be realised for different network configuration. The results are useful in determining the minimum channel capacity needed in order to stabilise plants over communication channels. The coder/decoder obtained can be used to analyse the effect of uncertainty on the channel capacity. An illustrative example is provided to show the effectiveness of the results.  相似文献   

14.
数字水印容量简化分析及模型优化   总被引:1,自引:0,他引:1       下载免费PDF全文
左卫群  王新华 《计算机工程》2010,36(15):145-147
根据图像数字水印基本原理和水印信道的构造及生成方式,从信息论的角度,对基于高斯噪声信道的数字水印容量进行探索。针对高斯信源分布具有最大的不确定性、能够在所有的二阶随机分布中提供最大信息熵的特点,分析在高斯分布情况下的整个水印信道通信过程,并引入平均互信息理论,给出基于高斯的水印信道容量的最大通信速率。同时分析加性噪声信道下的容量问题,将高斯分布扩展到非高斯分布,优化容量计算表达式,利用Matlab软件工具给出非高斯信源水印容量与受限失真度的2D和3D关系仿真曲线,并结合实际给出结果分析。  相似文献   

15.
A modified derivation of achievability results in classical-quantum channel coding theory is proposed, which has, in our opinion, two main benefits over previously used methods: it allows to (i) follow in a simple and clear way how binary hypothesis testing relates to channel coding achievability results, and (ii) derive in a unified way all previously known random coding achievability bounds on error exponents for classical and classical-quantum channels.  相似文献   

16.
In this paper, the optimal channel switching problem is studied for average capacity maximization in the presence of multiple receivers in the communication system. First, the optimal channel switching problem is proposed for average capacity maximization of the communication between the transmitter and the secondary receiver while fulfilling the minimum average capacity requirement of the primary receiver and considering the average and peak power constraints. Then, an alternative equivalent optimization problem is provided and it is shown that the solution of this optimization problem satisfies the constraints with equality. Based on the alternative optimization problem, it is obtained that the optimal channel switching strategy employs at most three communication links in the presence of multiple available channels in the system. In addition, the optimal strategies are specified in terms of the number of channels employed by the transmitter to communicate with the primary and secondary receivers. Finally, numerical examples are provided in order to verify the theoretical investigations.  相似文献   

17.
In this paper, we show a general equivalence between feedback stabilization through an analog communication channel, and a communication scheme based on feedback which is a generalization of that of Schalkwijk and Kailath. We also show that the achievable transmission rate of the scheme is given by the Bode's sensitivity integral formula, which characterizes a fundamental limitation of causal feedback. Therefore, we can now use the many results and design tools from control theory to design feedback communication schemes providing desired communication rates, and to generate lower bounds on the channel feedback capacity. We consider single user Gaussian channels with memory and memory-less multiuser broadcast, multiple access, and interference channels. In all cases, the results we obtain either achieve the feedback capacity, when this is known, recover known best rates, or provide new best achievable rates.  相似文献   

18.
A complete classification of one-mode Gaussian channels is given up to canonical unitary equivalence. We also comment on the quantum capacity of these channels. A channel complementary to the quantum channel with additive classical Gaussian noise is described, providing an example of a one-mode Gaussian channel which is neither degradable nor antidegradable.  相似文献   

19.
This paper extends the concept of topological to the case of uncertain dynamical systems. We address problems of observability and optimal control via limited capacity digital communication channels. The main results are given in terms of inequalities between date rate of the communication channel and topological entropy of the open-loop system. Topological entropy is calculated for some classes of uncertain dynamical systems.  相似文献   

20.
This study proposes two new coding functions for GHZ states and GHZ-like states, respectively. Based on these coding functions, two fault tolerant authenticated quantum direct communication (AQDC) protocols are proposed. Each of which is robust under one kind of collective noises: collective-dephasing noise and collective-rotation noise, respectively. Moreover, the proposed AQDC protocols enable a sender to send a secure as well as authenticated message to a receiver within only one step quantum transmission without using the classical channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号