首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For many applications of multimedia medical devices in clinical and medical issues, cloud computing becomes a very useful way. However, high energy consumption of cloud computing networks for these applications brings forth a large challenge. This paper studies the energy-efficient problem with QoS constraints in large-scale cloud computing networks. We use the sleeping and rate scaling mechanism to propose a link energy consumption model to characterize the network energy consumption. If there is no traffic on a link, we will let it be sleeping. Otherwise, it is activated and we divide its energy consumption into base energy consumption and traffic energy consumption. The former describes the constant energy consumption that exists when the link runs, while the later, which is a quadratic function with respect to the traffic, indicates the relations between link energy consumption and the traffic on the link. Then considering the relation among network energy consumption, number of active links, and QoS constraints, we build the multi-constrained energy efficient model to overcome the high energy consumption in large-scale cloud computing networks. Finally, we exploit the NSF and GEANT network topology to validate our model. Simulation results show that our approach can significantly improve energy efficiency of cloud computing networks.  相似文献   

2.
数据中心能耗优化问题是云计算领域的重要研究方向,但在真实环境中进行相关研究需要承担巨额的研究成本,并且实验周期长,因此仿真技术在该领域广泛应用.为提高数据中心能耗感知仿真实验的准确性和可信度,本文分析了仿真平台的内置能耗模型和其他学者提出的能耗评估方法,并在此基础上提出了基于CPU和内存利用率的能耗评估方法,该方法考虑了CPU利用率对内存能耗的影响,采用多元非线性模型进行回归分析.实验证明,本文提出的能耗评估方法在适用于仿真平台的同时具有较高的预测精度,有效地提高了云计算仿真平台能耗评估的准确性.  相似文献   

3.
Mobile systems, such as smartphones, are becoming the primary platform of choice for a user’s computational needs. However, mobile devices still suffer from limited resources such as battery life and processor performance. To address these limitations, a popular approach used in mobile cloud computing is computation offloading, where resource-intensive mobile components are offloaded to more resourceful cloud servers. Prior studies in this area have focused on a form of offloading where only a single server is considered as the offloading site. Because there is now an environment where mobile devices can access multiple cloud providers, it is possible for mobiles to save more energy by offloading energy-intensive components to multiple cloud servers. The method proposed in this paper differentiates the data- and computation-intensive components of an application and performs a multisite offloading in a data and process-centric manner. In this paper, we present a novel model to describe the energy consumption of a multisite application execution and use a discrete time Markov chain (DTMC) to model fading wireless mobile channels. We adopt a Markov decision process (MDP) framework to formulate the multisite partitioning problem as a delay-constrained, least-cost shortest path problem on a state transition graph. Our proposed Energy-efficient Multisite Offloading Policy (EMOP) algorithm, built on a value iteration algorithm (VIA), finds the efficient solution to the multisite partitioning problem. Numerical simulations show that our algorithm considers the different capabilities of sites to distribute appropriate components such that there is a lower energy cost for data transfer from the mobile to the cloud. A multisite offloading execution using our proposed EMOP algorithm achieved a greater reduction on the energy consumption of mobiles when compared to a single site offloading execution.  相似文献   

4.
Cloud-based data centers consume a significant amount of energy which is a costly procedure. Virtualization technology, which can be regarded as the first step in the cloud by offering benefits like the virtual machine and live migration, is trying to overcome this problem. Virtual machines host workload, and because of the variability of workload, virtual machines consolidation is an effective technique to minimize the total number of active servers and unnecessary migrations and consequently improves energy consumption. Effective virtual machine placement and migration techniques act as a key issue to optimize the consolidation process. In this paper, we present a novel virtual machine consolidation technique to achieve energy–QoS–temperature balance in the cloud data center. We simulated our proposed technique in CloudSim simulation. Results of evaluation certify that physical machine temperature, SLA, and migration technique together control the energy consumption and QoS in a cloud data center.  相似文献   

5.
Cloudlet is a novel computing paradigm, introduced to the mobile cloud service framework, which moves the computing resources closer to the mobile users, aiming to alleviate the communication delay between the mobile devices and the cloud platform and optimize the energy consumption for mobile devices. Currently, the mobile applications, modeled by the workflows, tend to be complicated and computation‐intensive. Such workflows are required to be offloaded to the cloudlet or the remote cloud platform for execution. However, it is still a key challenge to determine the offloading resolvent for the deadline‐constrained workflows in the cloudlet‐based mobile cloud, since a cloudlet often has limited resources. In this paper, a multiobjective computation offloading method, named MCO, is proposed to address the above challenge. Technically, an energy consumption model for the mobile devices is established in the cloudlet‐based mobile cloud. Then, a corresponding computation offloading method, by improving Nondominated Sorting Genetic Algorithm II, is designed to achieve the goal of energy saving for all the mobile device while satisfying the deadline constraints of the workflows. Finally, extensive experimental evaluations are conducted to demonstrate the efficiency and effectiveness of our proposed method.  相似文献   

6.
Information and communication technology (ICT) has a profound impact on environment because of its large amount of CO2 emissions. In the past years, the research field of “green” and low power consumption networking infrastructures is of great importance for both service/network providers and equipment manufacturers. An emerging technology called Cloud computing can increase the utilization and efficiency of hardware equipment. The job scheduler is needed by a cloud datacenter to arrange resources for executing jobs. In this paper, we propose a scheduling algorithm for the cloud datacenter with a dynamic voltage frequency scaling technique. Our scheduling algorithm can efficiently increase resource utilization; hence, it can decrease the energy consumption for executing jobs. Experimental results show that our scheme can reduce more energy consumption than other schemes do. The performance of executing jobs is not sacrificed in our scheme. We provide a green energy-efficient scheduling algorithm using the DVFS technique for Cloud computing datacenters.  相似文献   

7.
提出了一种新的蚁群算法优化的虚拟机放置策略ACA-VMP (Ant Colony Algorithm based virtual machine placement);ACA-VMP以云数据中心的总体能量消耗降低、服务质量最佳及减少虚拟机迁移次数为目标函数;根据蚁群优化算法,ACA-VMP采用了全局最优解和局部最优解信息素强度更新规则;全局最优解经过多次迭代后,蚂蚁路径的多次寻优,保证这个虚拟机放置优化策略的完成;局部信息素强度参数更新可以补充蚂蚁其他局部最优路径的寻找,这样也可以使得ACA-VMP虚拟机放置优化算法更快的接近全局最优解;仿真结果表明:ACA-VMP策略使得云数据中心的各类性能指标都可以改善,该实验结果对于其他企业构造节能云数据中心有很好的参考价值.  相似文献   

8.
One of the major challenges in cloud computing and data centers is the energy conservation and emission reduction. Accurate prediction algorithms are essential for building energy efficient storage systems in cloud computing. In this paper, we first propose a Three-State Disk Model (3SDM), which can describe the service quality and energy consumption states of a storage system accurately. Based on this model, we develop a method for achieving energy conservation without losing quality by skewing the workload among the disks to transmit the disk states of a storage system. The efficiency of this method is highly dependent on the accuracy of the information predicting the blocks to be accessed and the blocks not be accessed in the near future. We develop a priori information and sliding window based prediction (PISWP) algorithm by taking advantage of the priori information about human behavior and selecting suitable size of sliding window. The PISWP method targets at streaming media applications, but we also check its efficiency on other two applications, news in webpage and new tool released. Disksim, an established storage system simulator, is applied in our experiments to verify the effect of our method for various users’ traces. The results show that this prediction method can bring a high degree energy saving for storage systems in cloud computing environment.  相似文献   

9.

Excessive consumption of energy in cloud data centers whose number is increasing day by day has led to substantial problems. Hence, offering efficient schemes for virtual machine (VM) placement to decrease energy consumption in cloud computing environments has become a significant research field in recent years. In this paper, with the goal of reducing energy consumption in cloud data centers, we present a VM placement method using the cultural algorithm. In the proposed algorithm called balance-based cultural algorithm for virtual machine placement (BCAVMP), a new fitness function is introduced to evaluate VM allocation solutions. In this function, by using the sum of balance vector lengths for each VM placement, balanced utilization of resources is considered. Also, by applying the amount of energy usage in the fitness function, solutions with lower energy consumption are intended. The performance of the proposed method is evaluated using CloudSim simulator. The simulation results indicate that by appropriate VM assignment and resource wastage reduction, energy consumption in cloud data centers can be decreased.

  相似文献   

10.
虚拟机上部署容器的双层虚拟化云架构在云数据中心中的使用越来越广泛。为了解决该架构下云数据中心的能耗问题,提出了一种工作流任务调度算法TUMS-RTC。针对有截止时间约束的并行工作流,算法将调度过程划分为时间利用率最大化调度和运行时间压缩两个阶段。时间利用率最大化调度通过充分使用给定的时间范围减少完成工作流所需的虚拟机和服务器数量;运行时间压缩阶段通过压缩虚拟机空闲时间以缩短虚拟机和服务器的工作时间,最终达到降低能耗的目标。使用大量特征可控的随机工作流对TUMS-RTC算法的性能进行了测试。实验结果表明,TUMS-RTC算法相较于对比算法有更高的资源利用率,虚拟机数量减少率和能耗节省率,并且可以很好地处理云计算中规模大且并行度高的工作流。  相似文献   

11.
With continued advancements of mobile computing and communications, emerging novel multimedia services and applications have attracted lots of attention and been developed for mobile users, such as mobile social network, mobile cloud medical treatment, mobile cloud game. However, because of limited resources on mobile terminals, it is of great challenge to improve the energy efficiency of multimedia services. In this paper, we propose a cloud-assisted green multimedia processing architecture (CGMP) based on mobile cloud computing. Specifically, the tasks of multimedia processing with energy-extensive consumption can be offloaded to the cloud, and the face recognition algorithm with improved principal component analysis and nearest neighbor classifier is realized on CGMP based cloud platform. Experimental results show that the proposed scheme can effectively save the energy consumption of the equipment.  相似文献   

12.
This paper presents a novel algorithm for task assignment in mobile cloud computing environments in order to reduce offload duration time while balancing the cloudlets’ loads. The algorithm is proposed for a two-level mobile cloud architecture, including public cloud and cloudlets. The algorithm models each cloud and cloudlet as a queue to consider cloudlets’ limited resources and study response time more accurately. Performance factors and resource limitations of cloudlets such as waiting time for clients in cloudlets can be determined using queue models. We propose a hybrid genetic algorithm (GA) - Ant Colony Optimization (ACO) algorithm to minimize mean completion time of offloaded tasks for the whole system. Simulation results confirm that the proposed hybrid heuristic algorithm has significant improvements in terms of decreasing mean completion time, total energy consumption of the mobile devices, number of dropped tasks over Queue based Random, Queue based Round Robin and Queue based weighted Round Robin assignment algorithms. Also, to prove the superiority of our queue based algorithm, it is compared with a dynamic application scheduling algorithm, HACAS, which has not considered queue in cloudlets.  相似文献   

13.
In order to reduce the energy consumption in the cloud data center, it is necessary to make reasonable scheduling of resources in the cloud. The accurate prediction for cloud computing load can be very helpful for resource scheduling to minimize the energy consumption. In this paper, a cloud load prediction model based on weighted wavelet support vector machine(WWSVM) is proposed to predict the host load sequence in the cloud data center. The model combines the wavelet transform and support vector machine to combine the advantages of them, and assigns weight to the sample, which reflects the importance of different sample points and improves the accuracy of load prediction. In order to find the optimal combination of the parameters, we proposed a parameter optimization algorithm based on particle swarm optimization(PSO). Finally, based on the WWSVM model, a load prediction algorithm is proposed for cloud computing using PSO-based weighted support vector machine. The Google cloud computing data set is used to verify the algorithm proposed in this paper by experiments. The experiment results indicate that comparing with the wavelet support vector machine, autoregressive integrated moving average, adaptive network-based fuzzy inference system and tuned support vector regression, the proposed algorithm is superior to the other four prediction algorithms in prediction accuracy and efficiency.  相似文献   

14.
针对保证云中心性能下最小化能耗的问题,提出云中心异构服务器之间优化能耗分配方法.首先,建立云中心能耗优化的数学模型;然后,通过拉格朗日乘子法获取该模型的最优解,得到计算最小能量的最小能耗(MPC)算法;最后,通过大量数值实验进行算法验证并与功耗相等分配(EP)基准方法进行了比较.实验结果表明:在相同负载、相同响应时间约束下,MPC算法比EP基准方法节省近30%的能耗,并随着负载增加节省能耗的比例更高.MPC算法可有效避免云中心能源配置过载,为云中心资源优化配置提供思路和参考数据.  相似文献   

15.
Reducing energy consumption has become an important task in cloud datacenters. Many existing scheduling approaches in cloud datacenters try to consolidate virtual machines (VMs) to the minimum number of physical hosts and hence minimize the energy consumption. VM live migration technique is used to dynamically consolidate VMs to as few PMs as possible; however, it introduces high migration overhead. Furthermore, the cost factor is usually not taken into account by existing approaches, which will lead to high payment cost for cloud users. In this paper, we aim to achieve energy reduction for cloud providers and payment saving for cloud users, and at the same time, without introducing VM migration overhead and without compromising deadline guarantees for user tasks. Motivated by the fact that some of the tasks have relatively loose deadlines, we can further reduce energy consumption by proactively postponing the tasks without waking up new physical machines (PMs). A heuristic task scheduling algorithm called Energy and Deadline Aware with Non-Migration Scheduling (EDA-NMS) algorithm is proposed, which exploits the looseness of task deadlines and tries to postpone the execution of the tasks that have loose deadlines in order to avoid waking up new PMs. When determining the VM instant types, EDA-NMS selects the instant types that are just sufficient to guarantee task deadline to reduce user payment cost. The results of extensive experiments show that our algorithm performs better than other existing algorithms on achieving energy efficiency without introducing VM migration overhead and without compromising deadline guarantees.  相似文献   

16.
针对云计算环境下服务器利用率低、能耗浪费严重的问题,提出一种基于用户访问特征的云存储副本动态管理节能策略。通过把用户访问特征的研究转化为计算Block的访问热度,根据节点的整体访问热度,DataNode主动申请休眠从而达到节能的目的。给出了详细的休眠申请、休眠判断算法,以及在DataNode休眠期间出现对已休眠Block进行访问的情况时如何处理的解决方案。实验结果表明,采用该策略后可休眠29%~42%的DataNode,减少能耗31%,且服务器的用户响应时间不受影响。经过性能分析,得出该策略在保证数据可用性的同时可有效地降低能耗。  相似文献   

17.
Mobile cloud computing is an emerging service model to extend the capability and the battery life of mobile devices. Mostly one network application can be decomposed into fine-grained tasks which consist of sequential tasks and parallel tasks. With the assistance of mobile cloud computing, some tasks could be offloaded to the cloud for speeding up executions and saving energy. However, the task offloading results in some additional cost during the communication between cloud and mobile devices. Therefore, this paper proposes an energy-efficient scheduling of tasks, in which the mobile device offloads appropriate tasks to the cloud via a Wi-Fi access point. The scheduling aims to minimize the energy consumption of mobile device for one application under the constraint of total completion time. This task scheduling problem is reconstructed into a constrained shortest path problem and the LARAC method is applied to get the approximate optimal solution. The proposed energy-efficient strategy decreases 81.93% of energy consumption and 25.70% of time at most, compared with the local strategy. Moreover, the applicability and performance of the proposed strategy are verified in different patterns of applications, where the time constraint, the workload ratio between communication and computation are various.  相似文献   

18.
陈暄  赵文君  龙丹 《计算机应用研究》2021,38(3):751-754,781
针对移动云计算环境下的任务调度存在耗时长、设备能耗高的问题,提出了一种基于改进的鸟群算法(improved bird swarm algorithm,IBSA)的任务调度策略。首先,构建了以能耗和时间为主的移动云任务调度模型;其次,提出了自适应感知系数和社会系数,避免了算法陷入局部最优;构建了学习因子优化飞行行为,保证了个体寻优能力;最后,任务调度目标函数作为鸟群个体的适应度函数参与算法的迭代更新。仿真结果表明相比于蚁群算法、粒子群算法、鲸鱼算法等,改进的鸟群算法在移动云计算任务调度方面具有良好的效果,能够有效地节省时间和降低能耗。  相似文献   

19.
提出基于遗传算法的虚拟机放置方法GA-VMP(Genetic Algorithm based Virtual Machine Placement)。GA-VMP是一种应用于虚拟机迁移过程的优化算法。在物理主机状态检测和虚拟机选择阶段分别选取了鲁棒局部归约检测方法和最小迁移时间选择方法;在最后的虚拟机放置阶段,GA-VMP将遗传算法应用到虚拟机的重新分配过程中形成了一个全新的虚拟机迁移模型。设计云数据中心的能量消耗数学模型,以能量消耗最小作为遗传算法的目标函数。Cloudsim模拟器仿真结果表明:在总体能量消耗、虚拟机迁移次数、服务等级协议违规率等指标上明显降低,平衡指标参数只有少量的增加。仿真结果可为其他企业构造节能云数据中心提供参考作用。  相似文献   

20.
Virtual machines (VM) are used in cloud computing environments to isolate different software. They also support live migration, and thus dynamic VM consolidation. This possibility can be used to reduce power consumption in the cloud. However, consolidation in cloud environments is limited due to reliance on VMs, mainly due to their memory overhead. For instance, over a 4-month period in a real cloud located in Grenoble (France), we observed that 805 VMs used less than 12% of the CPU (of the active physical machines). This paper presents a solution introducing dynamic software consolidation. Software consolidation makes it possible to dynamically collocate several software applications on the same VM to reduce the number of VMs used. This approach can be combined with VM consolidation which collocates multiple VMs on a reduced number of physical machines. Software consolidation can be used in a private cloud to reduce power consumption, or by a client of a public cloud to reduce the number of VMs used, thus reducing costs. The solution was tested with a cloud hosting JMS messaging and Internet servers. The evaluations were performed using both the SPECjms2007 benchmark and an enterprise LAMP benchmark on both a VMware private cloud and Amazon EC2 public cloud. The results show that our approach can reduce the energy consumed in our private cloud by about 40% and the charge for VMs on Amazon EC2 by about 40.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号