首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dynamic stability of thin, laminated cylindrical shells under combined static and periodic axial forces is studied here using Love's theory for thin shells. A system of Mathieu–Hill equations is obtained by a normal-mode expansion of the equations of motion, the stability of which is examined by Bolotin's method. The dynamic instability regions are investigated for different lamination schemes. The effects of the length-to-radius and thickness-to-radius ratios of the cylinder on the instability regions are also examined.  相似文献   

2.
研究了一端固支且自由端轴向受压具有中间支承梁的横向振动和稳定性。利用边界条件推导了此种梁频率方程及分段振型函数的解析表达式。根据频率方程讨论了中间支承位置变化对梁固有频率的影响。应用Ritz-Galerkin截断方法,采用梁的前四阶振型对梁的运动微分方程进行离散化处理,讨论了梁在各个中间支承位置处的失稳形式。发现了在梁上存在一个特殊的中间支承位置ξl,当中间支承位置ξbξl时,随着压力p从零开始增加,梁先发生颤振失稳,当中间支承位置ξbξl时,则梁先发生发散失稳,而在中间支承位置ξl处,梁由颤振失稳跳跃到发散失稳。  相似文献   

3.
以能量有限元方法(EFEM)建立控制方程,研究了复合材料层合梁受激励时的横向振动问题。该方法以结构中的能量密度作为变量,根据波动理论中功率流与能量密度的平衡关系建立了与傅里叶热传导方程类似的二阶偏微分方程组,通过有限元离散得到结构单元节点的能量密度矩阵形式方程。根据耦合连续平衡条件,建立耦合单元节点矩阵,从而对总矩阵方程进行组集及求解,得到结构中能量密度的分布。通过数值算例与传统有限元方法(FEM)结果做了对比,取得了较好的一致性。  相似文献   

4.
针对轴力作用下部分作用组合梁的振动,给出了基于状态空间列式的求解方法,并导出了自由振动频率方程.进一步利用辛内积的概念,针对工程中常见的边界条件证明了振动模态的正交性,进而采用模态叠加法进行了瞬态响应分析,得到了移动集中荷载作用下该组合梁的动力响应.最后,给出了数值算例,计算了屈曲荷载,讨论了轴力对固有振动频率的影响以及对移动集中荷载作用下的部分作用组合梁的瞬态响应的影响.  相似文献   

5.
ABSTRACT

A six-variable state vector formulation for static deformation of the laminated curved beam bonded with piezoelectric actuators is deduced. The 2D numerical solution for the piezoelectric laminated curved beams (PLCB) is explored. Then the distributions of the electrical and mechanical fields along the beam thickness direction are investigated analytically. The static shape control is researched for a laminated half circular beam covered with piezoelectric actuators. Comparisons with the available results show the reliability of the proposed method. At the end a spiral laminated piezoelectric structure is analyzed and the parameter study is carried out using the presented method.  相似文献   

6.
The present study investigates the elastic stability of skew laminated composite plates subjected to biaxial inplane follower forces by the finite element method. The plate is assumed to follow first-order shear deformation plate theory (FSDPT). The kinetic and strain energies of skew laminated composite plate and the work done by the biaxial inplane follower forces are derived by using tensor theory. Then, by Hamilton's principle, the dynamic mathematical model to describe the free vibration of this problem is formed. The finite element method and the isoparametric element are utilized to discretize the continuous system and to obtain the characteristic equations of the present problem. Finally, natural vibration frequencies, buckling loads (also the instability types) and their corresponding mode shapes are found by solving the characteristic equations. Numerical results are presented to demonstrate the effects of those parameters, such as various inplane force combinations, skew angle and lamination scheme, on the elastic stability of skew laminated composite plates subjected to biaxial inplane follower forces.  相似文献   

7.
This study investigates problems associated with the design of scaled down models. Such study is important since it provides the necessary scaling laws, and the factors which affect the accuracy of the scale models. For better understanding the applicability of scaled down models in designing laminated composite structures, an analytical investigation was undertaken to assess the feasibility of their use. Employment of similitude theory to establish similarity among structural systems can save considerable expense and time, provided that the proper scaling laws are found and validated. In this study the limitation and acceptable interval of all parameters and corresponding scale factors are investigated. Particular emphasis is placed on the case of buckling of cross-ply cylindrical shells under uniaxial compressive loads. Both complete and partial similarity are discussed. This analytical study indicates that distorted models with a different number of layers and geometries than those of the prototype can predict the behavior of the prototype with good accuracy. However, it is shown that a scaled down model with different material properties than those of the prototype is incapable of predicting the response of the prototype.  相似文献   

8.
The dynamic stability behavior of damped laminated beam with various boundary conditions subjected to the uniformly distributed subtangential forces is investigated using the finite element formulation. The formal engineering approach of the mechanics for the thin-walled laminated beam based on kinematic assumptions consistent with Vlasov beam theory is used. An extended Hamilton’s principle is employed to obtain the mass-, damping-, elastic stiffness-, geometric stiffness matrices, and the load correction stiffness matrix due to the subtangential forces, respectively. The method for the evaluation of critical values for divergence and flutter of the nonconservative systems is briefly introduced in case of considering and neglecting damping effects. Throughout numerical examples, the influence of various parameters on the dynamic stability behavior of the nonconservative laminated beam is newly investigated: (1) the variation of the divergence and flutter loads due to the nonconservativeness with respect to the fiber orientation, (2) the effect of boundary condition on the instability region of the divergence-flutter system, and (3) the influence of external and internal damping on the flutter load.  相似文献   

9.
基于轴线可伸长杆的几何非线性理论,建立了由陶瓷和金属两种材料组成的功能梯度(FGM)梁在轴向载荷作用下后屈曲横向自由振动的精确模型,采用打靶法数值求解了一端可移简支一端固定的功能梯度梁在后屈曲附近的小振幅自由振动,获得了线性振动的响应,给出了不同梯度指标下FGM梁前三阶固有频率与载荷之间的特征关系曲线.数值结果表明,屈曲前各阶频率随轴向力的增加而降低,而屈曲后轴向力对各阶频率影响不同  相似文献   

10.
Summary In this paper a boundary element method is developed for the nonlinear analysis of composite beams of arbitrary doubly symmetric constant cross section, taking into account the shear deformation effect. The composite beam consists of materials in contact, each of which can surround a finite number of inclusions. The materials have different elasticity and shear moduli with same Poisson's ratio and are firmly bonded together. The beam is subjected in an arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a twisting moment. To account for shear deformations, the concept of shear deformation coefficients is used. Five boundary value problems are formulated with respect to the transverse displacements, the axial displacement and to two stress functions and solved using the Analog Equation Method, a BEM based method. Application of the boundary element technique yields a system of nonlinear equations from which the transverse and axial displacements are computed by an iterative process. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress functions using only boundary integration. Numerical examples with great practical interest are worked out to illustrate the efficiency and the range of applications of the developed method. The influence of both the shear deformation effect and the variableness of the axial loading are remarkable.  相似文献   

11.
A finite element analysis technique for an arbitrarily laminated anisotropic plate is described. A superparametric quadratic plate element with five degrees-of-freedom per node is used in the analysis. A stress-strain relation is derived from a three-dimensional approach to the problem. The volume integration of the stiffness matrix is evaluated by numerical integration using the Gauss quadrature formula with 2 × 2 × 2 sampling points. A variety of laminated plate problems is solved and the results are compared with the exact solutions, which demonstrate the validity of the method.  相似文献   

12.
《Composites》1994,25(4):263-272
A micromechanical model is presented which predicts the behaviour of a unidirectional composite subjected to axial shear load using standard finite elements. Only a three-dimensional model can handle the necessary shear loading boundary conditions when using such elements. These boundary conditions give shear stress components but no direct stress components within the composite. A parametric study is carried out on unidirectional carbon fibre/epoxy within the linear elastic regime of both constituents. The study reveals that the most critical parameters controlling the axial shear modulus of the composite are matrix modulus and fibre volume fraction whilst the stress state in the composite is mainly controlled by geometrical features of the composite, i.e., fibre volume fraction and fibre spacing. Comparison between the predicted axial shear modulus based on the concentric cylinder model and the current finite element model shows good agreement for low and intermediate fibre volume fractions. Both predictions lie within the Hashin bounds and the finite element prediction tends to be closer to the upper Hashin bound for fibre volume fractions greater than 60%. The initial tangent shear modulus predicted with the finite element model and that measured differ by less than 2.5%. The non-linear shear stress/strain response of the composite material is also predicted and agreement with the experimental results is good.  相似文献   

13.
The dynamic stability of laminated composite stiffened or non-stiffened plates and shells due to periodic in-plane forces at boundaries is investigated in this paper. A three-dimensional (3-D) degenerated shell element and a 3-D degenerated curved beam element are used to model plates/shells and stiffeners, respectively. The characteristic equations to find the natural frequencies, buckling loads and their corresponding mode shapes are obtained from the finite element equation of motion. Then, the method of Hill's infinite determinants or the method of multiple scales is applied to analyse the dynamic instability regions. Numerical results are presented to demonstrate the effects of various parameters, such as skew angle, lamination scheme, stiffened scheme, in-plane force type and curvature of cylindrical shell, on the dynamic stability of stiffened and non-stiffened plates and shells subjected to in-plane pulsating forces at boundaries.  相似文献   

14.
A new six-node higher-order triangular composite layered shell finite element with six degrees of freedom at each node is presented. With respect to the inplane variables, the in-plane and the out-of-plane displacement fields of the element are quadratic and cubic respectively. By using Utku's method (AFFDL-TR-71-160, Air Force Third Conf., Wright Paterson, Ohio, 1971), the transverse shear strain energy is computed directly from the displacement field rather than from the stress couple field. Some typical bending problems for composite laminated beams and plates with different stack sequences are analyzed. Excellent agreements are obtained when compared to the exact solutions, the first order shear deformation theory (FSDT), the higher order shear deformation theory (HSDT) and some other existing finite element models. ‘Shear locking’ is avoided when the plate is thin.  相似文献   

15.
A simple and direct procedure is presented for the formulation of an element stiffness matrix on element co-ordinates for a beam member and a beam-column member including shear deflections. The resulting stiffness matrices are compared with those obtained using the alternative formulation in terms of member flexibilities: The relative effects of axial force and shear force on the stiffness coefficients are presented. The critical buckling loads, considering the effects of shear force, are computed and compared with those available in the literature. Only prismatic members are considered.  相似文献   

16.
Abstract

This paper presents the free vibration analysis of a variable stiffness laminated composite sandwich plates. The fiber orientation angle of the face sheets (Skin) is assumed to vary linearly with the x-axis. The problem formulation is based on the higher-order shear deformation plate theory HDST C0 coupled with p-version of finite element method. The elements of the stiffness and mass matrices are calculated analytically. The sandwich plate is presented with a uniform mesh of four p-elements and the convergence properties are achieved by increasing the degree p of the hierarchical shape functions. A calculation program is developed to determine the fundamental frequencies for different physical and mechanical parameters such as plate thickness, core to face sheets thickness ratio, orientation angle of curvilinear fibers and boundary conditions. The results obtained show a good agreement with the available solutions in the literature. New comparison study of vibration response of laminated sandwich plate between the straight and curvilinear fibers is presented.  相似文献   

17.
This paper reports on the actual and virtual low velocity impact response of carbon fibre composite laminates. It utilises the contribution of through-thickness stresses, in the prediction of the onset of internal damage created by this type impact scenario.The paper focuses on the damage imparted by the flat nose impactor since this induces a different type of damage and structural response compared to that of the standard test method of using a round nose impactor.Vulnerability of the fibrous composites to vertical drop-weight impact can result in premature failure which is a major concern in their widespread usage. The topic has been of intense research to design more damage tolerant and resistant materials. However, due to materials’ anisotropic and three-dimensional nature and complicated damage mechanisms no standard model could have been achieved. Designers predict consequences of a local impact within the global structural context without full-scale testing.Majority of the existing simulation models neglect through-thickness stresses that are regarded as the major cause of catastrophic failures. Efficient and reliable investigations are required to reduce testing and include through-thickness stresses. Drop-weight impact simulation models were developed herein using ABAQUS™ software. Simulations were carried out to compute in-plane stresses subjected to flat and round nose impacts on laminates of differing thicknesses. These stresses once computed were numerically integrated employing the equilibrium equations to efficiently predict through-thickness stresses. The predicted stresses were then utilised in failure criteria to quantify the coupled and embedded damage. This provides a quick insight into the status and contribution of through-thickness stresses in failure predictions. The computed values were compared to the experimental results and found to be in good agreement.  相似文献   

18.
This paper presents a finite element model based on the first order shear deformation theory to investigate the dynamic behavior of laminated composite plates traversed by a moving oscillator. The oscillator model is assumed to be consisting of two nodal masses that are connected by means of a spring-damper unit. The governing equations of motion of two sub-systems are separately integrated by applying the Newmark’s time integration procedure. Then, the obtained equations are coupled and the responses of system components are calculated in each time step. The accuracy of algorithm is verified by comparing the numerical results of static, free vibration and simplified moving force problems analysis with the available exact solutions and other numerical results in the literature. Also, the effects of mass ratio, damping ratio of system components, stiffness of suspension system, velocity and eccentricity of moving oscillator on dynamic responses is parametrically studied. This algorithm can be applied to various boundary conditions, lamination schemes and fiber angels.  相似文献   

19.
The finite element dynamic stability analysis of laminated composite skew structures subjected to in-plane pulsating forces is carried out based on the higher-order shear deformation theory (HSDT). The two boundaries of the instability regions are determined using the method proposed by Bolotin. The numerical results obtained for square and skew plates with or without central cutout are in good agreement with those reported by other investigators. The new results for laminated skew plate structures containing cutout in this study mainly show the effect of the interactions between the skew angle and other various parameters, for example, cutout size, the fiber angle of layer and thickness-to-length ratio. The effect of the magnitude of the periodic in-plane load on the dynamic instability index is also investigated.  相似文献   

20.
In this paper a boundary element method is developed for the second-order analysis of frames consisting of beams of arbitrary simply or multiply connected constant cross section, taking into account shear deformation effect. Each beam is subjected to an arbitrarily concentrated or distributed variable axial loading, while the shear loading is applied at the shear center of the cross section, avoiding in this way the induction of a twisting moment. To account for shear deformations, the concept of shear deformation coefficients is used. Three boundary value problems are formulated with respect to the beam deflection, the axial displacement and to a stress function and solved employing a BEM approach. The evaluation of the shear deformation coefficients is accomplished from the aforementioned stress function using only boundary integration. Numerical examples with great practical interest are worked out to illustrate the efficiency, the accuracy and the range of applications of the developed method. The influence of both the shear deformation effect and the variableness of the axial loading are remarkable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号