首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The integrated coal gasification combined cycle (IGCC) can achieve higher power generation efficiency than conventional pulverized coal combustion power plants. However, a CO2 capture process prevents improving power generation efficiency of IGCC, because CO2 separation from gas mixtures requires huge amounts of energy. Therefore, in this study, we analyzed the CO2 separation process in the pre-combustion capture process using a process simulator (PRO/II) in the steady state, and proposed a new process using a modularity based on self-heat recuperation (SHR) technology to decrease energy consumption. Pre-combustion capture was applied in the IGCC plant, which involved coal gasification and CO-shift conversion with CO2 capture. The results show that the energy consumption for the CO2 separation process using SHR was decreased by two-thirds. This means that the power generation efficiency can be improved by SHR compared with conventional IGCC with a CO2 capture process.  相似文献   

2.
Development of clean coal technology is highly envisaged to mitigate the CO2 emission level whilst meeting the rising global energy demands which require highly efficient and economically compelling technology. Integrated gasification combined cycle (IGCC) with carbon capture and storage (CCS) system is highly efficient and cleaner compared to the conventional coal-fired power plant. In this study, an alternative process scheme for IGCC system has been proposed, which encompasses the reuse of CO2 from the flue gas of gas turbine into syngas generation, followed by methanol synthesis. The thermodynamic efficiency and economic potential are evaluated and compared for these two systems. The performances of the systems have been enhanced through systematic energy integration strategies. It has been found that the thermodynamic and economic feasibilities have attained significant improvement through the realisation of a suitably balanced polygeneration scheme. The economic potential can be enhanced from negative impact to 317?M€/y (3.6?€/GJ). The results have demonstrated promising prospects of employing CO2 reuse technology into IGCC system, as an alternative to CCS system.  相似文献   

3.
Oxyfuel combustion with carbon capture and sequestration(CCS) is a carbon-reduction technology for use in large-scale coal-fired power plants. Significant progress has been achieved in the research and development of this technology during its scaling up from 0.4 MWth to 3 MWth and 35 MWth by the combined efforts of universities and industries in China. A prefeasibility study on a 200 MWe large-scale demonstration has progressed well, and is ready for implementation. The overall research development and demonstration(RDD) roadmap for oxyfuel combustion in China has become a critical component of the global RDD roadmap for oxyfuel combustion. An air combustion/oxyfuel combustion compatible design philosophy was developed during the RDD process. In this paper, we briefly address fundamental research and technology innovation efforts regarding several technical challenges, including combustion stability, heat transfer, system operation, mineral impurities, and corrosion. To further reduce the cost of carbon capture, in addition to the large-scale deployment of oxyfuel technology, increasing interest is anticipated in the novel and nextgeneration oxyfuel combustion technologies that are briefly introduced here, including a new oxygen-production concept and flameless oxyfuel combustion.  相似文献   

4.
Global economic development anticipates a growth in demand of the energy sector whose supply in the coming decades will remain achieved by burning fossil fuels. The need to stabilize the CO2 atmospheric concentration requires technologies for capturing and reutilization of this greenhouse gas. Such scenario motivates feasibility analysis of power generation with post-combustion capture of CO2 from the flue gas associated with its transformation into chemical commodities. Specifically, the economic performance of an integrated NGCC with post-combustion capture and utilization is evaluated to balance aggregated revenues with energy penalty. The proposed CO2 reutilization is the production of methanol (MeOH), organic carbonates—dimethyl carbonate (DMC) and ethylene carbonate (EC), and ethylene glycol (EG). The study uses CO2 capture with MEA (monoethanolamine), including compression of the captured gas followed by its conversion to methanol and organic carbonates, and separation of products with recycle of reactants. Three scenarios were evaluated corresponding to the capture of 30, 50, and 80 % of the CO2 present in the flue gas. The comparative analysis includes definition of design premises followed by synthesis of process flowsheet, process simulation in the three scenarios, with sizing of the main pieces of process equipments for economic analysis—capital and operational expenditures (CAPEX and OPEX). Results indicated economic feasibility for the three scenarios. Furthermore, energy and mass balances showed that the emissions from energy demand to drive reactions and separations surpasses the proposed sequestration of CO2 by chemical utilization in the scenarios of 30 and 50 % of CO2 capture from NGCC emissions. In reality, CO2 accounting for cases 1 and 2 reveals a “carbon debt” while for case 3 a net positive abatement of CO2 occurs which increases process revenue by 1.7 % and reduces ROI in 1 year.  相似文献   

5.
Abstract

Future fossil fuel power generation is likely to include technologies which increase process efficiency and reduce its impact on the environment, for example, CO2 sequestration. Some of the key technologies identified for clean coal and natural gas combustion to produce power or hydrogen or both include O2 generation/separation, H2 and CO2 separation. Hydrogen is considered as a potentially excellent substitute for transport fuels due to the concern over dwindling oil reserves and global warming. This paper discusses various separation processes that may be used in the industrial production of hydrogen from fossil fuels, with an emphasis on membrane separation technologies. Membrane separation has the advantage over other separation methods in that it is simple and potentially less energy intensive. Depending on the particular separation process utilised, however, the membrane materials can differ substantially. The materials used for H2, O2 and CO2 separation are discussed and the major similarities and differences between the membranes highlighted. Critical design aspects of the membrane such as multiple phase design, nano-structure control, the need for surface layers and fabrication processes are also reviewed as they represent the areas where most research and development effort is likely to be directed in the future.  相似文献   

6.
Future fossil fuel power generation is likely to include technologies which increase process efficiency and reduce its impact on the environment, for example, CO2 sequestration. Some of the key technologies identified for clean coal and natural gas combustion to produce power or hydrogen or both include O2 generation/separation, H2 and CO2 separation. Hydrogen is considered as a potentially excellent substitute for transport fuels due to the concern over dwindling oil reserves and global warming. This paper discusses various separation processes that may be used in the industrial production of hydrogen from fossil fuels, with an emphasis on membrane separation technologies. Membrane separation has the advantage over other separation methods in that it is simple and potentially less energy intensive. Depending on the particular separation process utilised, however, the membrane materials can differ substantially. The materials used for H2, O2 and CO2 separation are discussed and the major similarities and differences between the membranes highlighted. Critical design aspects of the membrane such as multiple phase design, nano-structure control, the need for surface layers and fabrication processes are also reviewed as they represent the areas where most research and development effort is likely to be directed in the future.  相似文献   

7.
This editorial introduces and provides an overview of a Special Issue dedicated to the jubilee 10th Conference of Process Integration, Modelling and Optimization for Energy Saving and Pollution Reduction—PRES’07. It contains thirteen selected papers covering various fields of cleaner technologies and environment policy problems. The technologies address recent developments in CO2 capture in Combined Cycle power plants, CO2 reduction in pulp and paper mills, process efficiency increases combined with energy savings at a mill, distillation separation enhancements and emissions control at gas plants, pre-combustion decarbonisation for polygenertion from fossil fuels, minimisation of CO2 emissions in steam and power plants, a study of co-pyrolysis of biomass and plastic wastes, waste-to-energy system design (with a focus on incineration and gasification technologies), optimal design of wastewater treatment systems, and integrated production of sugar and biofuels from sugar beet. Among these topics, The Special Issue includes demonstration of the technologies in the form of Advanced Case studies.  相似文献   

8.
CO2 capture by chemical or physical sorption and membrane separation have been the dominant fields of research within post- and pre-combustion CO2 capture from power cycles and industrial processes. Except for oxy-combustion capture applications, limited attention has been given to low-temperature capture from flue gas and synthesis gas by phase separation. This paper gives an overview of common CO2 capture conditions for a broad range of different power cycles and industrial processes. For a selected range of capture conditions, potential applications for low-temperature CO2 capture have been evaluated with respect to energy consumption and CO2 capture ratio. For all applications of low-temperature capture, specific power consumption and obtainable CO2 capture ratio are sensitive to flue-gas or synthesis-gas feed CO2 concentration. However, for certain applications such as synthesis gas from coal gasification, low-temperature capture shows promising potential and highly competitive energy figures compared to baseline technology.  相似文献   

9.
Abstract

Enhancing the fluxes in gas separation membranes is required for utilizing the membranes on a mass scale for CO2 capture. Membrane thinning is one of the most promising approaches to achieve high fluxes. In addition, sophisticated molecular transport across membranes can boost gas separation performance. In this review, we attempt to summarize the current state of CO2 separation membranes, especially from the viewpoint of thinning the selective layers and the membrane itself. The gas permeation behavior of membranes with ultimate thicknesses and their future directions are discussed.  相似文献   

10.
《工程(英文)》2017,3(2):257-265
In this paper, a reinforcement learning (RL)-based Sarsa temporal-difference (TD) algorithm is applied to search for a unified bidding and operation strategy for a coal-fired power plant with monoethanolamine (MEA)-based post-combustion carbon capture under different carbon dioxide (CO2) allowance market conditions. The objective of the decision maker for the power plant is to maximize the discounted cumulative profit during the power plant lifetime. Two constraints are considered for the objective formulation. Firstly, the tradeoff between the energy-intensive carbon capture and the electricity generation should be made under presumed fixed fuel consumption. Secondly, the CO2 allowances purchased from the CO2 allowance market should be approximately equal to the quantity of CO2 emission from power generation. Three case studies are demonstrated thereafter. In the first case, we show the convergence of the Sarsa TD algorithm and find a deterministic optimal bidding and operation strategy. In the second case, compared with the independently designed operation and bidding strategies discussed in most of the relevant literature, the Sarsa TD-based unified bidding and operation strategy with time-varying flexible market-oriented CO2 capture levels is demonstrated to help the power plant decision maker gain a higher discounted cumulative profit. In the third case, a competitor operating another power plant identical to the preceding plant is considered under the same CO2 allowance market. The competitor also has carbon capture facilities but applies a different strategy to earn profits. The discounted cumulative profits of the two power plants are then compared, thus exhibiting the competitiveness of the power plant that is using the unified bidding and operation strategy explored by the Sarsa TD algorithm.  相似文献   

11.
Membrane gas absorption technology is a promising alternative for CO2 removal from post-combustion coal-fired flue gases. This study examines an alternative which consists in absorbing carbon dioxide by ammonia aqueous solution in a membrane contactor to improve the capture processes and to intensify the gas–liquid transfer. Absorption measurements through a membrane contactor have been made. The influence of the material nature constituting the membrane and operating parameters on the capture efficiency has been studied. The potentialities of dense skin membrane contactors are discussed with regard to both increased CO2 mass transfer performances and mitigation of ammonia volatilization. The results have shown that it is possible to capture CO2 from ammonia through a membrane with capture efficiency greater than 90 %. The membrane limits ammonia losses but does not eliminate it. The experimental results are used to calculate an intensification factor of 5, which represents the comparison between the membrane overall absorption rate to that of the column.  相似文献   

12.
Among various clean energy technologies, one innovative option for reducing the emission of greenhouse gases (GHGs) and criteria pollutants involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from a combination of coal and sustainably sourced biomass. With a relatively pure CO2 stream as an inherent byproduct of the process, most of the resulting GHG emissions can be eliminated by simply compressing the CO2 for pipeline transport. Subsequent storage of the CO2 output in underground reservoirs can result in very low—perhaps even near-zero—net GHG emissions, depending on the fraction of biomass as input and its CO2 signature. To examine the potential market penetration and environmental impact of coal-and-biomass-to-liquids-and-electricity (CBtLE), a system-wide sensitivity analysis was performed using the MARKet ALlocation energy model. CBtLE was found to be most competitive in scenarios with a combination of high oil prices, low CCS costs, and, unexpectedly, non-stringent carbon policies. In the scheme considered here (30 % biomass input on an energy basis and 85 % carbon capture), CBtLE fails to achieve significant market share in deep decarbonization scenarios, regardless of oil prices and CCS costs. Such facilities would likely require higher fractions of biomass feedstock and captured CO2 to successfully compete in a carbon-constrained energy system.  相似文献   

13.
CO2 capture and sequestration is an energy‐intensive industry to deal with the global greenhouse effect. Membrane separation is considered a cost‐effective method to mitigate the emission of CO2. Though good separation performance and stability have been reported, supported ionic liquid membranes are still not widely applied for CO2 separation due to the high cost. As a novel analogous solvent to ionic liquid, deep eutectic solvent retains the excellent merits of ionic liquid and is cheap with facile preparation. Herein, a highly CO2‐philic separation membrane is constructed by nanoconfining choline chloride/ethylene glycol (ChCl/EG) deep eutectic solvent into graphene oxide nanoslits. Molecular dynamic simulation results indicate that the confinement makes a difference to the structure of the nanoconfined ChCl/EG liquid from their bulk, which remarkably facilitates CO2 transport. By tuning the molar ratio of ChCl/EG and thickness of the membrane, the resultant membrane exhibits outstanding separation performance for CO2 with excellent selectivity over other light gases, good long‐term durability, and thermal stability. This makes it a promising membrane for selective CO2 separation.  相似文献   

14.
Membrane-based carbon dioxide (CO2) capture and separation technologies have aroused great interest in industry and academia due to their great potential to combat current global warming, reduce energy consumption in chemical separation of raw materials, and achieve carbon neutrality. The emerging covalent organic frameworks (COFs) composed of organic linkers via reversible covalent bonds are a class of porous crystalline polymers with regular and extended structures. The inherent structure and customizable organic linkers give COFs high and permanent porosity, short transport channel, tunable functionality, and excellent stability, thereby enabling them rising-star alternatives for developing advanced CO2 separation membranes. Therefore, the promising research areas ranging from development of COF membranes to their separation applications have emerged. Herein, this review first introduces the main advantages of COFs as the state-of-the-art membranes in CO2 separation, including tunable pore size, modifiable surfaces property, adjustable surface charge, excellent stability. Then, the preparation approaches of COF-based membranes are systematically summarized, including in situ growth, layer-by-layer stacking, blending, and interface engineering. Subsequently, the key advances of COF-based membranes in separating various CO2 mixed gases, such as CO2/CH4, CO2/H2, CO2/N2, and CO2/He, are comprehensively discussed. Finally, the current issues and further research expectations in this field are proposed.  相似文献   

15.
Abstract

Poly(amidoamine)s (PAMAMs) incorporated into a cross-linked poly(ethylene glycol) exhibited excellent CO2 separation properties over H2. However, the CO2 permeability should be increased for practical applications. Monoethanolamine (MEA) used as a CO2 determining agent in the current CO2 capture technology at demonstration scale was readily immobilized in poly(vinyl alcohol) (PVA) matrix by solvent casting of aqueous mixture of PVA and the amine. The resulting polymeric membranes can be self-standing with the thickness above 3 μm and the amine fraction less than 80 wt%. The gas permeation properties were examined at 40 °C and under 80% relative humidity. The CO2 separation performance increased with increase of the amine content in the polymeric membranes. When the amine fraction was 80 wt%, the CO2 permeability coefficient of MEA containing membrane was 604 barrer with CO2 selectivity of 58.5 over H2, which was much higher than the PAMAM membrane (83.7 barrer and 51.8, respectively) under the same operation conditions. On the other hand, ethylamine (EA) was also incorporated into PVA matrix to form a thin membrane. However, the resulting polymeric membranes exhibited slight CO2-selective gas permeation properties. The hydroxyl group of MEA was crucial for high CO2 separation performance.  相似文献   

16.
One of the main bottlenecks to deploying large-scale carbon dioxide capture and storage (CCS) in power plants is the energy required to separate the CO(2) from flue gas. For example, near-term CCS technology applied to coal-fired power plants is projected to reduce the net output of the plant by some 30% and to increase the cost of electricity by 60-80%. Developing capture materials and processes that reduce the parasitic energy imposed by CCS is therefore an important area of research. We have developed a computational approach to rank adsorbents for their performance in CCS. Using this analysis, we have screened hundreds of thousands of zeolite and zeolitic imidazolate framework structures and identified many different structures that have the potential to reduce the parasitic energy of CCS by 30-40% compared with near-term technologies.  相似文献   

17.
《工程(英文)》2017,3(2):232-243
Carbon capture and storage (CCS) technology will play a critical role in reducing anthropogenic carbon dioxide (CO2) emission from fossil-fired power plants and other energy-intensive processes. However, the increment of energy cost caused by equipping a carbon capture process is the main barrier to its commercial deployment. To reduce the capital and operating costs of carbon capture, great efforts have been made to achieve optimal design and operation through process modeling, simulation, and optimization. Accurate models form an essential foundation for this purpose. This paper presents a study on developing a more accurate rate-based model in Aspen Plus® for the monoethanolamine (MEA)-based carbon capture process by multistage model validations. The modeling framework for this process was established first. The steady-state process model was then developed and validated at three stages, which included a thermodynamic model, physical properties calculations, and a process model at the pilot plant scale, covering a wide range of pressures, temperatures, and CO2 loadings. The calculation correlations of liquid density and interfacial area were updated by coding Fortran subroutines in Aspen Plus®. The validation results show that the correlation combination for the thermodynamic model used in this study has higher accuracy than those of three other key publications and the model prediction of the process model has a good agreement with the pilot plant experimental data. A case study was carried out for carbon capture from a 250 MWe combined cycle gas turbine (CCGT) power plant. Shorter packing height and lower specific duty were achieved using this accurate model.  相似文献   

18.
This work presents a sustainability analysis of CO2 reuse to produce dimethyl carbonate (DMC) via ethylene oxide (ROUTE A) and via urea methanolysis (ROUTE B). Two different technologies are considered in ROUTE A: reaction followed by separation and reactive distillation. Life cycle analyses of the ROUTES are presented employing sustainability analysis performed in HYSYS process simulator, along with WAR Algorithm. Process economical optimization is performed to maximize the processes profitability. A sustainability function, defined as a 2D indicator involving both economical and environmental aspects, is calculated for the optimized processes. Additional sustainability indexes are evaluated: material index, energy index, and ecoefficiency. The results, under both economical and environmental aspects, show that ROUTE A is the most sustainable. The study also points to the relevance of the frontier set between the domains cradle-to-gate and gate-to-gate in assessing process sustainability during LCA.  相似文献   

19.
《工程(英文)》2017,3(4):485-493
Membrane gas separation is one of the most promising technologies for the separation of carbon dioxide (CO2) from various gas streams. One application of this technology is the treatment of flue gases from combustion processes for the purpose of carbon capture and storage. For this application, poly(ethylene oxide)-containing block copolymers such as Pebax® or PolyActive™ polymer are well suited. The thin-film composite membrane that is considered in this overview employs PolyActive™ polymer as a selective layer material. The membrane shows excellent CO2 permeances of up to 4 m3(STP)·(m2·h·bar)−1 (1 bar = 105 Pa) at a carbon dioxide/nitrogen (CO2/N2) selectivity exceeding 55 at ambient temperature. The membrane can be manufactured reproducibly on a pilot scale and mounted into flat-sheet membrane modules of different designs. The operating performance of these modules can be accurately predicted by specifically developed simulation tools, which employ single-gas permeation data as the only experimental input. The performance of membranes and modules was investigated in different pilot plant studies, in which flue gas and biogas were used as the feed gas streams. The investigated processes showed a stable separation performance, indicating the applicability of PolyActive™ polymer as a membrane material for industrial-scale gas processing.  相似文献   

20.
《工程(英文)》2017,3(2):166-170
This work uses a mathematical optimization approach to analyze and compare facilities that either capture carbon dioxide (CO2) artificially or use naturally captured CO2 in the form of lignocellulosic biomass toward the production of the same product, dimethyl ether (DME). In nature, plants capture CO2 via photosynthesis in order to grow. The design of the first process discussed here is based on a superstructure optimization approach in order to select technologies that transform lignocellulosic biomass into DME. Biomass is gasified; next, the raw syngas must be purified using reforming, scrubbing, and carbon capture technologies before it can be used to directly produce DME. Alternatively, CO2 can be captured and used to produce DME via hydrogenation. Hydrogen (H2) is produced by splitting water using solar energy. Facilities based on both photovoltaic (PV) solar or concentrated solar power (CSP) technologies have been designed; their monthly operation, which is based on solar availability, is determined using a multi-period approach. The current level of technological development gives biomass an advantage as a carbon capture technology, since both water consumption and economic parameters are in its favor. However, due to the area required for growing biomass and the total amount of water consumed (if plant growing is also accounted for), the decision to use biomass is not a straightforward one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号