首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
运用刚性模型测压风洞试验方法对单圆柱、不同间距串列双圆柱和串列三圆柱绕流的时均压力分布与气动力进行了研究。首先,进行单圆柱模型和不同间距串列双圆柱模型的绕流试验,试验的雷诺数为3.4×104;其次,通过与单圆柱进行对比,讨论了气动干扰对串列三圆柱时均压力分布与时均阻力的影响规律;最后,通过与串列双圆柱进行对比,讨论了圆柱的数量对干扰规律的影响。试验结果发现,串列三圆柱的绕流存在两个完全不同的流态,其切换的临界间距(L/D)cr在3.5~4.0之间,两个流态下的时均压力分布与时均阻力存在明显的差异。本研究可对实际工程中串列圆柱结构的风荷载取值提供参考。  相似文献   

2.
This experimental study concerns the characteristics of vortex flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one is rotating. Pressure losses and skin friction coefficients have been measured for fully developed flows of water and of 0.4% aqueous solution of sodium carboxymethyl cellulose (CMC), respectively, when the inner cylinder rotates at the speed of 0-600 rpm. Also, the visualization of vortex flows has been performed to observe the unstable waves. The results of present study reveal the relation of the bulk flow Reynolds number Re and Rossby number Ro with respect to the skin friction coefficients. In somehow, they show the existence of flow instability mechanism. The effect of rotation on the skin friction coefficient is significantly dependent on the flow regime. The change of skin friction coefficient corresponding to the variation of rotating speed is large for the laminar flow regime, whereas it becomes smaller as Re increases for the transitional flow regime and, then, it gradually approach to zero for the turbulent flow regime. Consequently, the critical (bulk flow) Reynolds number Rec decreases as the rotational speed increases. Thus, the rotation of the inner cylinder promotes the onset of transition due to the excitation of Taylor vortices.  相似文献   

3.
The velocities, turbulence intensities, Reynolds shear stresses, and turbulent kinetic energies of the flow fields around two square cylinders in a tandem arrangement were investigated using particle image velocimetry (PIV). The experiments were made for the spacing between the two cylinders ranging from s/D = 0.5 to 10.0 and two Reynolds numbers of 5,300 and 16,000. The results showed that the flow patterns at s/D≤2.0 were drastically different from those at s/D≥2.5 for both Reynolds numbers. The sudden change in the flow patterns depended on the reattachment of the shear layer separated from the upstream cylinder.  相似文献   

4.
针对两种布置形式(水平布置和对角布置)的串列双方柱,通过同步测压风洞试验,在雷诺数为Re = 8.0×104、间距比为P/B = 1.75 ~ 5.00(其中P为方柱中心间距、B为方柱边长)条件下,得到了两种布置形式串列双方柱的表面风压,重点研究了对角串列双方柱的气动力、风压分布、Strouhal数等气动性能随方柱间距的变化规律,并与水平串列双方柱进行比较。水平串列双方柱的气动力在P/B = 3.00 ~ 3.50时会发生跳跃现象,下游方柱的平均阻力由负值突变为正值,而对角下游方柱平均阻力系数则均为负值。结果表明:当P/B<3.00时,对角串列双方柱的平均和脉动气动力系数、最大平均负压强度和脉动风压系数均大于水平串列双方柱,而当P/B > 3.00时则情况相反;对角串列双方柱的Strouhal数明显小于相同间距下的水平串列双方柱,且在P/B <3.00时对角串列双方柱的升力功率谱出现了多个峰值。  相似文献   

5.
In this experimental work, a technique of digital particle image velocimetry (DPIV) is employed to characterize instantaneous vorticity and time-averaged velocity, vorticity, root mean square (rms) velocities, Reynolds stress correlations and phase-averaged contours in the downstream of circular, sharp-edged square and 45 orientated square cylinders in a uniform flow. Strouhal numbers for 550≤Re≤3400 are calculated from wake flow patterns. Shear layers surrounding the recirculation bubble region behind the cylinder are discussed in terms of flow physics and vortex formation lengths of large-scale Kármán vortices. Enhancement levels of Reynolds stress correlations associated with cross-stream velocity are clarified. Finally, flow structures depending on the cylinder geometry and Reynolds number are interpreted with quantitative representations.  相似文献   

6.
Since the curvature of free-form surfaces are variable, it is difficult to guarantee the quality of the surface polished with traditional polishing technology. The chief aim of this paper is to investigate the features of an original elastic polishing wheel device. The polishing trajectory of the elastic polishing wheel was simulated to study the relationship between the uniformity of a kind of polishing trajectory and the ratio of rotational speed “i” which is the ratio of the velocity of the rotation and the revolution. Orthogonal experiment was carried out to explore the effect of various factors (rotational ratio, press amount h, speed of rotation, and granularity of abrasive grains) on surface roughness polished. The writer has come to the conclusion that i has an influence on the uniformity of polishing trajectory. The polishing coefficient of variation “CV” of i?=?10.645751 is 32% lower than i?=?10. Increasing the number of digits after the decimal point of i, the polishing track performs more uniform and densely. The experimental tests show that the influence of rotational ratio, press amount h, speed of rotation, and granularity of abrasive grains on surface roughness polished decreases progressively.  相似文献   

7.
We numerically investigated the rising of bubbles in a quiescent liquid layer. The numerical simulation is performed by solving the incompressible, multiphase Navier-Stokes equations via computational code in axisymmetric coordinates using a Coupled level-set and volume-of-fluid (CLSVOF) method. The numerical results show that the CLSVOF method with a novel algebraic relation between F and ? for axisymmetric two-phase flows not only can predict the bubble surface accurately, but also overcome the deficiency in preserving volume conservation. The effects of the Reynolds number Re and the Bond number Bo on the bubble deformation and its motion are investigated. The results show that with the increasing of Re (10 < Re < 150), the bubble shape transfers from oblate ellipsoidal cap to toroidal when Bo = 116. With the increasing of Bo (10 < Bo < 700), the bubble shape transfers from oblate ellipsoidal to toroidal when Re = 30. Although the toroidal bubble shapes are reached in these two cases, the transition modes are different. For the case Bo = 116, the bubble front is pierced by an upward jet from the rear of the bubble. While for the case Re = 30, the rear of the bubble is pierced by a downward jet from the front part.  相似文献   

8.

Unsteady flow and convective heat transfer over single and two tandem cylinders at constant-heat-flux condition in subcritical range of Reynolds number was numerically investigated. Two-dimensional computations were performed by adopting 3-equation k-kl-ω turbulence model using a commercial software FLUENT®. The aim was to investigate the capabilities of k-kl-ω turbulence model for collective flow and heat transport conditions past cylindrical bodies and then to identify a critical spacing ratio for the maximum heat transport. The center-to-center spacing ratio (L/D) was varied in the range from 1.2 to 4.0. Instantaneous path lines and vorticity contours were generated to interpret the interaction of shear layer and vortices from upstream cylinder with the downstream cylinder. Comparison of pressure coefficients, fluctuating and average lift as well as drag coefficients, Strouhal number and the local and average Nusselt numbers with the available literatures indicated a reasonably good agreement. The combined outcome of flow field and heat transfer study revealed a critical spacing ratio of L/D = 2.2. Based on the present investigation, a correlation has been suggested to calculate overall average Nusselt number of the two cylinders placed in tandem.

  相似文献   

9.
In this paper two-dimensional (2-D) numerical investigation of flow past four square cylinders in an in-line square configuration are performed using the lattice Boltzmann method. The gap spacing g = s/d is set at 1, 3 and 6 and Reynolds number ranging from Re = 60 to 175. We observed four distinct wake patterns: (i) a steady wake pattern (Re = 60 and g = 1); (ii) a stable shielding wake pattern (80 ≤ Re ≤ 175 and g = 1); (iii) a wiggling shielding wake pattern (60 ≤ Re ≤ 175 and g = 3) and (iv) a vortex shedding wake pattern (60 ≤ Re ≤ 175 and g = 6). At g = 1, the Reynolds number is observed to have a strong effect on the wake patterns. It is also found that at g = 1, the secondary cylinder interaction frequency significantly contributes for drag and lift coefficients signal. It is found that the primary vortex shedding frequency dominates the flow and the role of secondary cylinder interaction frequency almost vanish at g = 6. It is observed that the jet between the gaps strongly influenced the wake interaction for different gap spacing and Reynolds number combination. To fully understand the wake transformations the details vorticity contour visualization, power spectra of lift coefficient signal and time signal analysis of drag and lift coefficients also presented in this paper.  相似文献   

10.
Drag force control of flow over wavy cylinders at low reynolds number   总被引:1,自引:0,他引:1  
Three-dimensional numerical simulations on the laminar flow around a circular cylinder with different diameter along the spanwise leading to a type of sinusoidal waviness, named wavy cylinder are performed at low Reynolds number. A series of wavy cylinders with different combinations of spanwise wavelength and wave amplitude are conducted at a Reynolds number of 100. The optimal range of wavelength and the effect of wave amplitude are obtained. The results show that the 3-D free shear layers from the cylinder are more difficult to roll up to vortex and hence the wake formation lengths of some typical wavy cylinders are larger than that of the circular cylinder and in some cases the free shear layers even do not roll up into vortex behind the cylinder. The mean drag coefficients of the typical wavy cylinders are less than that of a corresponding circular cylinder with the same mean diameter; also the fluctuating lift coefficients are reduced. The reduction of mean drag coefficient and fluctuating lift coefficient of wavy cylinder increases with the value of wavy amplitude. Furthermore, a typical wavy cylinder model at Re=150 is also simulated and found that the control of flow induced vibration by modifing the spanwise wavelength of cylinder has a relationship with the variation of Reynolds number.  相似文献   

11.
The influence of the velocity ratio (VR) between the jet and main flow on the wake structure and aerodynamic loss of the trailing edge jet is studied using particle image velocimetry and numerical simulations. Three different velocity ratios, namely, VR = 0.5, 1.0, 1.5, are chosen for this comparative study. The Reynolds number (Re h ) based on the slot height (h) and the mainstream velocity (U0) are 3380. Results show that the influence of jet on wake structure is significant such that the wake region shrinks and the turbulent kinetic energy is enhanced as the velocity ratio increases. The distribution area of strong vorticity is enlarged with increasing velocity ratio. By using proper orthogonal decomposition and fast Fourier transfer analysis, the variation of velocity ratio demonstrates significant impact on vortex shedding and turbulent kinetic energy. The aerodynamic loss coefficient is nearly constant between VR = 0.5 and 1.0, but increases by 3.25 % as the velocity ratio increases from 1.0 to 1.5.  相似文献   

12.
In this paper, heat transfer characteristics of a turbulent slot jet impinging orthogonally on an isothermal moving hot plate is studied numerically. The governing equations were discretized using the finite volume method and the υ 2f turbulence model was employed for turbulence modeling. The effect of the jet Reynolds number and the plate-to-jet velocity ratio (R) on the Nusselt were investigated. Despite of most previous studies, which have been restricted to R≤2, in the present research higher values of R, also were considered (0≤R≤6). Range of studied jet Reynolds number was between 3000 and 60000. The results indicate that at a fixed plate-to-jet velocity ratio increment of the Reynolds number leads to the enhancement of the average Nusselt number. For each Reynolds number, the average Nusselt number reduces with increasing the plate-to-jet velocity ratio until it becomes minimum at R = 1.25. For R>1.25 trend changes so that these parameters increase. In addition, it was found that only for R>2.5 the average Nusselt number is improved due to the plate motion in comparison with the stationary jet. The results are validated against available experimental data, showing good agreement.  相似文献   

13.
This study aims to investigate the effect of the three cutting parameters (rotation, feed rate, and number of tool strokes) on the values of roughness (Rk, Rpk, Rvk, Mr1, Mr2, Rp/Rt ratio, and Vo) in flexible honed crankcase cylinder of hermetic compressors. The study was based on a full factorial design 2 × 2 × 3, where the rotation and the feed rate were investigated in two levels and the number of tool strokes in three levels. The cylinders were initially honed using a multi-spindle honing machine, Gehring model. A set of three honing tools was used each with two strokes, the first for roughing (120 mesh), the second for semi-finishing (270 mesh), and the third for finishing (600 mesh). For conventional honing (CH), the depth of the cut and the feed rate were kept constant. The flexible honing process was carried out after conventional honing (C+FH) in a CNC milling machine using a Silicon Carbide flex hone tool 800 mesh and 24.2 mm nominal diameter considering 12 different cutting conditions. An electromechanical surface roughness tester was used to carry out roughness measurements. The measurement uncertainty was assessed following the recommendations of the GUM-JCGM 101. The analysis of variance (ANOVA) technique was applied, and it was observed that the number of the tool strokes was the factor that contributed the most to the improvement of the surface finish of the cylinders.  相似文献   

14.
Two-dimensional, steady, incompressible Navier-Stokes and energy equations are expressed in the stream function/vorticity formulation and solved numerically by finite difference method to study effects of buoyancy on fluid flow and heat transfer from a horizontal circular cylinder. The cylinder is exposed to approaching flow stream, for parallel (parallel flow) and opposing (contra flow) directions to the buoyant force. Two different thermal boundary conditions were considered at the cylinder surface: constant temperature (CT) and constant heat flux (CHF). The results elucidating the dependence of the flow and heat transfer characteristics on the Richardson number 0≤ Ri ≤ 2, Prandtl number 0 ≤ Pr ≤ 100 and Reynolds number 0 ≤ Re ≤ 40 are presented. Overall, for parallel flow regime, an increase in the Ri led to a raise in both Nusselt number and drag coefficient. However, for contra flow regime, these trends were reversed. For both regimes, the aforementioned behaviors were more pronounced for CT boundary condition than that for the CHF boundary condition.  相似文献   

15.
Experimental investigation of the fluid flow and thermal flow pattern around two circular cylinders in cross flow has been carried out. Reynolds number was varied in the range of 100≦Re≦1000 and the distance between the two cylinders in the interval of 2≦L/D≦4. Velocity and turbulence intensity distributions in the isothermal distribution in the whole x−y thermal flow field was obtained by double-exposure holographic interferometry. The influences of Reynolds number and the gap spacing between the two cylinders were investigated. The characteristic flow pattern was found to depend on the distance between the two cylinders. WhenL≦3D, the wake region between the two cylinders became quasi-stationary.  相似文献   

16.
In the present study, numerical simulations are performed to explore the significance of elytron-hindwing interaction in the forward flying Coleopteran beetle. The study investigates the effects of hindwing stroke amplitude (A/c) and advance ratio (J), (which is defined as the ratio of the incoming air velocity to the wing flapping velocity), on the aerodynamic forces. The wing kinematics of a Coleopteran beetle is constructed by using a combination of translation and rotation motion. The elytron is modeled by using a cambered airfoil that mimics the real geometry of the beetle wing, and the hindwing is modeled by using an elliptical profile. The results indicate that the beetle cruises with a constant velocity at approximately J = 0.3 in the tandem wing arrangement. It is observed that the angle of the net force vector relative to the stroke plane tilts systematically according to the flying speed. The influence of vortex structures on the beetle aerodynamic forces is analyzed. The elytron-hindwing interaction is found to be beneficial to the vertical force generation of hindwing as well as for the elytron when J > 0.0. The vortices interaction is observed during the downstroke period, and the leading edge vortex (LEV) of the elytron is captured by LEV of the hindwing that enhances the total vertical force. During the upstroke translation phase, the combined trailing edge vortex of elytron interacts/merges with the LEV of the hindwing and increases the horizontal force.  相似文献   

17.
高雷诺数下有限长圆柱绕流阻力特性研究   总被引:1,自引:0,他引:1  
赵萌  毛军  郗艳红 《机械工程学报》2015,51(22):176-182
针对不同长径比的有限长圆柱模型,采用大涡模拟及雷诺平均的方法,对高雷诺数下有限长圆柱绕流阻力特性进行数值模拟和分析,得到了圆柱阻力系数随长径比和雷诺数的变化规律,讨论端面效应对绕流阻力系数的影响。结果表明:在亚临界区内,相同雷诺数下阻力系数随长径比的增大而增大,呈线性变化规律,L/D的对阻力系数的影响明显大于Re对阻力系数的影响;在阻力危机区内,相同雷诺数下阻力系数随长径比的增大而增大,呈二次函数的变化规律,但各工况达到阻力系数“转折点”对应的雷诺数各不相同,基本呈现随雷诺数的增大向前推移的趋势,Re对阻力系数的影响明显大于L/D对阻力系数的影响;在阻力回升区,阻力系数回升的“转折点”随着雷诺数的逐渐增大而向后推移。在各分区内,端面效应对阻力系数的影响随雷诺数增大而更加明显,在高度方向上的最大影响区域约占圆柱总高度的16%。研究结果对有限长圆柱绕流特性的研究及应用具有重要意义和价值。  相似文献   

18.
提出一种旋转振动圆柱从潮流能中主动获取能量的方法。基于Fluent软件的用户自定义函数求解旋转振动圆柱升力,采用动网格技术对一定速度下的旋转振动圆柱获取潮流能进行数值模拟研究。参照相关试验结果,进行数值模拟结果确认,得到的最大升力系数幅值与平均阻力系数幅值与试验结果基本吻合。分析相位差、振幅比及转动幅值对旋转振动圆柱获能效率的影响。结果表明,同振幅比、同转动幅值的旋转振动圆柱,能量利用率都是随着相位差先逐渐增大后减小;同相位差、同转动振幅的旋转振动圆柱,在有效获能范围,其振幅比越大则能量利用率越高;同相位差、同振幅比的旋转振动圆柱,随着转动幅值的增加,其能量利用率先逐渐增加后减小;当相位差为243°,转动幅值为3,振幅比为2.0时,能量利用率最高。  相似文献   

19.
An experimental study was carried out to investigate the effect of a splitter plate on wake flows downstream of a circular cylinder symmetrically placed in a confined channel. A particle image velocimetry (PIV) measurement was applied to visualize the flow structure and analyze changes in the vortex shedding process. The control elements of the splitter plate length, L/D (D is the cylinder diameter) was varied from 0 to 1.5 and Reynolds number, ReD was considered at 2400 and 3000. The experimental results showed that the splitter plate had an influence on stabilization of wake turbulences in a confined channel. For shorter splitter plate length of L/D=0.5 and 0.75 cases, flow structures were significantly modified and the vortex shedding frequency decreased as compared with bare cylinder cases. For longer splitter plate length of L/D=1, 1.25 and 1.5 cases, the generation of a secondary vortex was observed based on the snapshot proper orthogonal decomposition (snapshot POD) analysis. In addition, turbulent characteristics corresponding to turbulent kinetic energy (TKE) and Reynolds shear stress correlations took the lowest values and the dominant vortex shedding frequency disappeared. There was an optimal value of the splitter plate length at L/D=1 on suppression of velocity fluctuations. Moreover, the stabilizing effect of a splitter plate was more obvious at Reynolds number of ReD=3000 than that at ReD=2400.  相似文献   

20.
Seales deposited onto the heating surfaces of heat exchangers seriously reduce the heat transfer performance and also increase the hydrodynamic drag. Accordingly, fouling is an important problem in the design and operation of heat exchangers. Present paper investigates the heat transfer around in-line four circular cylinders on which geothermal water scales are uniformly distributed. The cylinders are settled in tandem with equal distance between neighbouring cylinders and only the test cylinder is heated under the condition of constant heat flux. It is found that the heat transfer of the in-line tube banks greatly varies with the fouling of geothermal water scale, especially its scale height. Further, the local and average Nusselt numbers strongly depend upon the cylinder spacing and the Reynolds number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号