首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hexaferrite BaFe12 O 19 phase was synthesized through the mechanical alloying process followed by subsequent annealing. Rietveld refinements of as-milled powder annealed at 700 °C confirm the formation of the BaFe12 O 19 phase with the presence of an important amount of the α-Fe2 O 3 phase. Thus, prior mechanical milling shows much lower reaction temperature and less reaction time compared to conventional methods. Further annealing up to 900 and 1100 °C could not enable the formation of a single BaFe12 O 19 phase, reaching an optimum phase composition ratio close to BaFe12 O 19/ α-Fe2 O 3 70/30. The crystallite size was found to be in the nanoscale level but increases with increasing temperature (BaFe12 O 19 = 20–62 nm; α-Fe2 O 3 = 31–74 nm). SEM micrographs show that as the annealing temperature rises, the particles become more regular with sharp edges and hexagonal-like shapes. Magnetic measurements reveal that both M s and M r increase with annealing temperature to reach maximum values at 900 °C then remain unchanged, associated with phase composition. The coercivity H c increases upon annealing up to 700 °C to a much higher value, from 1.7 kOe for as-milled powder to 4.8 kOe. Its value then decreases, attributed to grain (particle) growth (formation of larger particles) due to high annealing temperatures: 900–1100 °C. The obtained composites show very interesting magnetic properties and can be considered for potential applications, such as hyperthermia, heavy metal and dye removal, and hard/soft magnetic composites.  相似文献   

2.
Polycrystalline sample LiMg(1?x)PO4:xTb3+ (x = 0.001, 0.002, 0.005, 0.01, 0.02) phosphor was synthesized via modified solid state method (MSSM). The prepared sample was characterized through XRD pattern (X-ray diffraction) and SEM (scanning electron microscope). Additionally, photoluminescence (PL), optically stimulated luminescence (OSL), thermoluminescence (TL) and other dosimetric properties including dose linearity, reusability and fading were studied. In OSL mode, sensitivity of prepared phosphor was found to be 2.7 times that of LiMgPO4:Tb3+, B (BARC) phosphor and 4.3 times that of α-Al2O3:C (BARC) phosphor. The TL glow consists of overlapping peaks in temperature range of 50–400°C and first peak (P1) was observed at 150°C, second peak (P2) at 238°C, third peak (P3) at 291°C and fourth peak (P4) at 356°C. The TL sensitivity of second peak (P2) of LiMgPO4:Tb3+ phosphor was compared with α-Al2O3:C (BARC) phosphor and found to be 100 times that of the α-Al2O3:C (BARC) phosphor. The minimum detectable dose (MDD) was found to be 5.6 μGy. Moreover, photoionization cross-sections, linearity, reusability, fading and kinetic parameters were calculated. Also, photoluminescence spectra of LiMgPO4: Tb3+ shows characteristic green–yellow emission exciting at 224 nm UV source.  相似文献   

3.
The nanocrystalline SrFe12 O 19 materials were prepared by a sol-gel auto-combustion method using different fuels such as citric acid, dextrose, aniline, and hexamine. The combustion product obtained from all the fuels except from that of aniline show a single phase of SrFe12 O 19 materials upon annealing at 1000 °C/2 h. The combustion product obtained from aniline as fuel shows SrFe12 O 19 as the main phase with α-Fe2 O 3 as impurity. No notable change in lattice parameters is observed due to variation in fuels for SrFe12 O 19 materials. With a little change in the NIR relative reflectance (72–85 %) on fuels, the different SrFe12 O 19 materials display high NIR reflectance in the wavelength range, 1500–2500 nm. The photoluminescence emission spectra of SrFe12 O 19 materials reveal a broad emission peak at ~350 nm which is reminiscent to the Ba-based hexaferrite, BaFe12 O 19. The FESEM images expose quite dissimilar morphology for the various fuels used in the synthesis of SrFe12 O 19 materials. Hysteresis loops for all the nanocrystalline SrFe12 O 19 materials observed under the applied field of ±1.5 T at room temperature exhibit hard ferromagnetic property. The SrFe12 O 19 materials produced from glycine and aniline as fuels exhibit highest and lowest M s values of 61.3 and 50.5 emu/g, respectively.  相似文献   

4.
The present paper focuses on methods of further improving the flux pinning and critical current density of disk-shaped MgB2 bulk superconductors by adding excess Mg metal in combination with an optimum silver content and optimized processing conditions. Bulk MgB2 samples were produced by in situ solid-state reaction in Ar gas ambient using high purity commercial powders of Mg metal and 1.5 wt% carbon-coated amorphous B powders mixed in a fixed ratio of Mg/B = 1.1:2. Further, 4 wt% silver was added to improve flux pinning as well as mechanical performance of the bulk MgB2 material. The magnetization measurements confirmed a sharp superconducting transition with Tc,onset at around 37 K, which is only by 1 K lower than in bulk MgB2 material produced without carbon-coated amorphous boron. The critical current density (Jc) values significantly improved in the MgB2 material with 4 wt% of silver and 1.5 wt% of carbon-coated amorphous boron, sintered at 775 °C for 3 h. At 20 K, this sample showed Jc at around 500 and 350 kA/cm2 in the self-field and 1 T, respectively, which makes it suitable for several industrial applications.  相似文献   

5.
Three composite modes of CoFe2 O 4/BaTiO3 (CFO/BTO) were created with appropriate stoichiometric proportion. They are nitrate solution of CFO mixed with BTO (SCB), self-propagating precursor of CFO mixed with BTO (PCB), and the made-up CFO mixed with BTO (MCB) separately. The microstructural, ferroelectric, and ferromagnetic properties of SCB, PCB, and MCB bulk composites were investigated. SCB, PCB, and MCB bulk composites with a molar ratio of 2:8 were calcined at 1020, 1120, and 1160 °C, respectively. And X-ray diffraction (XRD) analysis showed that they all correspond to the CFO with cubic spinel structure and the BTO with tetragonal perovskite structure. The formation temperature of BTO with hexagonal structure is related to the distance of inter-diffusion and Co 2+ concentration in the CFO/BTO bulk composite. The wet chemical routing is of benefit to inhibit the agglomeration of the BTO in the CFO/BTO bulk composite. The maximum polarization of 5.24 μC/cm 2 was received in the MCB bulk composite sintered at 1160 °C with a molar ratio of 1:9. The maximum saturation magnetization of 31.609 emu/g and the remnant magnetization of 10.336 emu/g were obtained in the MCB bulk composite sintered at 1160 °C with a molar ratio of 4:6. The threshold ferromagnetic phase content of percolation which has an effect on the MCB bulk composite is less than 40 mol %.  相似文献   

6.
The effect of constant tensile elastic stresses on the field dependence of the magnetoelasticity (ΔE effect) of Fe64Co21B15 amorphous ferromagnetic ribbons after thermomagnetic treatment in a temperature interval from 290 to 360°C has been studied. The maximum value of the negative ΔE effect increases upon application of a relatively small tensile stress and decreases under the action of large stresses. In addition, the application of tensile stresses decreases the magnetic field corresponding to a maximum negative ΔE effect. The results are explained based on notions about the influence of constant tensile stresses on the domain structure of ferromagnetic materials with positive magnetostriction and induced uniaxial anisotropy.  相似文献   

7.
This paper reports growth of Co0.6Zn0.4Mn0.3Fe1.7O4 (CZFMO) ultrathin films (thickness: 23–30 nm) by spin coating technique on silicon (100), (110) and (111) substrates. The deposited films were annealed at 700 °C for 1 h in the oxygen environment. All the films were found to be polycrystalline in nature. The CZFMO films were found to have minimal residual stress (13–50 MPa), which could be an encouraging feature for novel microwave miniaturized device applications. Room temperature magnetic measurements demonstrated completely saturated hysteresis loop with the highest squareness ratio (M R /M S )?~?60% for the film grown on Si (110) substrate. On the other hand CZFMO films on Si (100) and Si (111) substrates showed unsaturated hysteresis loops with M R /M S ~ 10 and 5%, respectively. The reason for the better magnetic properties of the ultrathin CZFMO film on Si (110) substrate seems to be its better crystalline quality and larger grain size compared to those of other films.  相似文献   

8.
High-iron Fe–Zr–Si amorphous ribbons were fabricated through the melt-spun technique. Then, the effects of Si content on the glass-forming ability and magnetic properties of Fe90?xZr10Six (x =?1, 2, 3, 4, 5, 10) alloys were investigated. Results showed that the amorphous structure only formed in an alloy composition of 3 at.% Si. Moreover, α-Fe(Si) and Fe3Zr phase appeared gradually when Si was added. Fe87Zr10Si3 alloy is a unique amorphous structure in Fe90?xZr10Six ribbons. The peak temperatures of the two crystallization stages were 464 and 600 °C. The saturation magnetization (Ms) values of the alloys ranged from 91.2 to 132.3 emu/g, and all had an initial increase before decreasing and their coercivity (Hc) values increased with increased Si content. The Fe87Zr10Si3 amorphous alloy exhibited a low Hc value of approximately 39.1 A/m, which shows good magnetic properties in the as-quenched state. After annealing, the Ms of the amorphous sample considerably improved, particularly reaching 165.3 emu/g at 600 °C.  相似文献   

9.
The upconversion luminescence (UCL) of nanocrystalline gadolinium oxide (Gd2O3) doped with Er3+ and Yb3+ ions has been studied in the temperature range of 90–400 K. The nanocrystals were synthesized by chemical vapor deposition and possessed a cubic crystalline structure with an average particle size within 48–57 nm. It is established that the USL intensity in the red (4F9/24I15/2 transition in Er3+ ion) and green (4S3/24I15/2 transition) spectral regions depends on the sample temperature and concentration of dopant ions, as well as on the additional structural defects (anion vacancies) created in the crystal lattice by the introduction of Zn2+ ions or irradiation with high-energy (10 MeV) electrons. The luminescence efficiency and spectrum of the upconversion phosphor are determined by energy transfer processes.  相似文献   

10.
Barium hexagonal ferrites (BaNd x Fe12?x O 19) have been synthesized by initial high-energy milling of the precursors and calcining subsequently. The as-prepared samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). XRD and SEM examinations reveal that a high-crystallized hexagonal BaNd x Fe12?x O 19 with lamellar morphology is obtained when the precursor is calcined at 1200°C in air for 3 h. The hexagonal crystalline structure of BaFe12 O 19 is not changed after doping Nd3+ ions in BaFe12 O 19. However, lattice parameters a and b values increase with an increase in Nd content at first, then decrease. Nd substitution may improve the magnetic properties of BaNd x Fe12?x O 19. BaNd0.1Fe11.9 O 19, obtained at 1050°C, has the highest specific saturation magnetization value (80.81 emu/g) and magnetic moment (16.21 μ B); BaNd0.2Fe11.8 O 19, obtained at 950°C, has the highest coercivity value, 4075.19 Oe.  相似文献   

11.
Thermal deformations of Na6(UO2)2O(MoO4)4 were studied by high-temperature powder X-ray diffraction. The compound crystallizes in the triclinic system, space group Р\(\bar 1\), a = 7.636(7), b = 8.163(6), c = 8.746(4) Å, α = 72.32(9)°, β = 79.36(4)°, γ = 65.79(5)°, V = 472.74(4) Å3. It is stable in the temperature interval 20–700°С. The thermal expansion coefficients (TECs) are α11 = 25.5 × 10–6, α22 = 7.8 × 10–6, and α33 = 1.1 × 10–6 (°C)–1. The orientation of the TEC pattern relative to the crystallographic axes is a33^Z = 45°, a33^X = 122°, a22^Z = 59°, and a22^X = 66°. The anisotropy of the thermal expansion is due to specific features of the crystal structure of the compound.  相似文献   

12.
The structure of Ni75Nb12B13 alloys prepared by liquid quenching (LQ) and mechanical alloying (MA) has been studied by x-ray diffraction. The alloy prepared by LQ at a cooling rate of ~106 K/s is shown to be fully amorphous, while MA yields an amorphous-crystalline material in which the predominant phase is an fcc Ni〈Nb,B〉 solid solution. The thermal stability of the alloys and their structural transformations on heating have been studied by differential scanning calorimetry. The amorphous phase obtained by LQ is shown to crystallize at 490°C. After heating to 720°C, the alloy consists of two equilibrium phases: Ni21Nb2B6 (τ) and Ni5Nb3B2 (z). Heating the MA alloy to 720°C leads to the formation of a stable τ-phase, while the Ni-based fcc solid solution remains supersaturated and, hence, metastable. Increasing the milling time leads to the formation of nanocrystalline τ and Ni3B phases, in addition to the Ni-based fcc solid solution, which corresponds to the equilibrium phase composition of the Ni75Nb12B13 alloy in the Ni-Nb-B phase diagram. The effect of high-energy milling on the phase composition of the alloy is similar to that of heat treatment.  相似文献   

13.
We report the electrical (angular magneto-resistance and Hall), thermal (heat capacity) and spectroscopic (Raman, X-ray photoelectron, angle-resolved photoelectron) characterization of a bulk Bi2Se3 topological insulator, which was grown by self-flux method through solid-state reaction from high-temperature (950°C) melt and slow cooling (2°C/h) of constituent elements. Bi2Se3 exhibited metallic behaviour down to 5 K. Magneto-transport measurements revealed linear up to 400 and 30% magneto-resistance (MR) at 5 K under a 14-T field in perpendicular and parallel field directions, respectively. We noticed that the MR of Bi2Se3 is very sensitive to the angle of the applied field. The MR is maximum when the field is normal to the sample surface, while it is minimum when the field is parallel. The Hall coefficient (R H) is seen nearly invariant with a negative carrier sign down to 5 K albeit having near-periodic oscillations above 100 K. The heat capacity (C p) versus temperature plot is seen without any phase transitions down to 5 K and is well fitted (C p = γ T + β T 3) at low temperature with a calculated Debye temperature (?? D) value of 105.5 K. Clear Raman peaks are seen at 72, 131 and 177 cm?1 corresponding to A\(_{\mathrm {1g}}^{1}\), E\(_{\mathrm {g}}^{2}\) and A\(_{1\mathrm {g}}^{2}\), respectively. Though two distinct asymmetric characteristic peak shapes are seen for Bi 4f7/2 and Bi 4f5/2, the Se 3d region is found to be broad, displaying the overlapping of spin-orbit components of the same. Angle-resolved photoemission spectroscopy (ARPES) data of Bi2Se3 revealed distinctly the bulk conduction bands (BCB), surface state (SS), Dirac point (DP) and bulk valence bands (BVB), and 3D bulk conduction signatures are clearly seen. Summarily, a host of physical properties for the as-grown Bi2Se3 crystal are reported here.  相似文献   

14.
The crystal structure of a previously unknown compound [CH3NH3][(UO2)(H2AsO4)3] was solved by direct methods and refined to R 1 = 0.038 for 3041 reflections with |F hkl | >-4σ |F hkl |. The compound crystallizes in the monoclinic system, space group P21/c, a = 8.980(1), b = 21.767(2), c = 7.867(1) Å, β = 115.919(5)°, V = 1383.1(3) Å3, Z = 4. In the structure of the compound, pentagonal bipyramids of uranyl ions, sharing bridging atoms with tetrahedral [H2AsO4]? anions, form strongly corrugated layered complexes [(UO2)(H2AsO4)3]? arranged parallel to the (100) plane. The protonated methylamine molecules [CH3NH3]+ form unidimensional tapelike packings parallel to the c axis and linked by hydrophilic-hydro-phobic interactions. The topology of the layered uranyl arsenate complex [(UO2)(H2AsO4)3]? is unusual for uranyl compounds and was not observed previously. A specific feature of this topology is the presence of monodentate arsenate “branches” arranged within the layer.  相似文献   

15.
The crystallization of amorphous Sn-doped TlInS2 films into three polymorphs has been studied by kinematic electron diffraction. The results demonstrate that the crystallization of 30-nm-thick amorphous films produced by thermal evaporation in high vacuum can be described by the Avrami–Kolmogorov equation: Vτ = V0[1–exp(–kτm)]. Kinematic electron diffraction patterns of the TlIn1–хSnxS2 films have been used to assess the effect of doping with Sn on the growth dimensionality and the activation energy for the crystallization of the amorphous films and the unit-cell parameters of the resultant crystalline materials. Doping extends the temperature range and effective activation energy for the crystallization of the amorphous films.  相似文献   

16.
Cu–Al substituted Co ferrite nanopowders, Co1?x Cu x Fe2?x Al x O4 (0.0 ≤ x ≤ 0.8) were synthesized by the co-precipitation method. The effect of Cu–Al substitution on the structural and magnetic properties have been investigated. X-ray diffraction (XRD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM) are used for studying the effect of variation in the Cu–Al substitution and its impact on particle size, magnetic properties such as M s and H c . Cu–Al substitution occurs and produce a secondary phase, α-Fe 2 O 3. The crystallite size of the powder calcined at 800 °C was in the range of 19–26 nm. The lattice parameter decreases with increasing Cu–Al content. The nanostructural features were examined by FESEM images. Infrared absorption (IR) spectra shows two vibrational bands; at around 600 (v 1) and 400 cm ?1 (v 2). They are attributed to the tetrahedral and octahedral group complexes of the spinel lattice, respectively. It was found that the physical and magnetic properties have changed with Cu–Al contents. The saturation magnetization decreases with the increase in Cu–Al substitution. The reduction of coercive force, saturation magnetization and magnetic moments are may be due to dilution of the magnetic interaction.  相似文献   

17.
The crystal structure of a previously unknown compound KNa3[(UO2)5O6(SO4)] [space group Pbca, a = 13.2855(15), b = 13.7258(18), c = 19.712(2) Å, V = 3594.6(7) Å3] was solved by direct methods and refined to R 1 = 0.055 for 3022 reflections with |F hkl | ≥ 4σ |F hkl |. In the structure there are five sym-metrically nonequivalent uranyl cations. They are linked by cationcation (CC) interactions to form a pentamer whose central cation is U(2)O 2 2+ forming two three-centered CC bonds. All the uranyl ions are coordinated in the equatorial plane by five O atoms, which leads to the formation of pentagonal bipyramids sharing common edges to form layers parallel to the (100) plane. The sulfate tetrahedron links the uranyl layers into a 3D framework. The K+ and Na+ cations are arranged in framework voids. A brief review of CC interactions in U(VI) compounds is presented.  相似文献   

18.
The photoluminescence (PL) spectra and Eu2+ excited state lifetime of EuGa2S4 and EuGa2S4:Er3+ have been studied in the range 78–500 K. The spectra show a band at 545 nm, due to the 4f 65d → 4f 7(8 S 7/2) transition. With increasing temperature, the full width at half maximum Γ(T) of the PL band of EuGa2S4 and EuGa2S4:Er3+ crystals increases from 0.15 to 0.22 and from 0.13 to 0.19 eV, respectively. Over the entire temperature range studied, Γ(T) is a linear function of T 1/2. The 545-nm emission intensity and Eu2+ excited state lifetime in EuGa2S4 and EuGa2S4:Er3+ vary exponentially with temperature. The luminescence quenching energies evaluated from the Arrhenius plots of I(103/T) and τ(103/T) coincide (0.10 eV) within the error of determination.  相似文献   

19.
The critical behavior of perovskite manganite La0.67Ba0.33Mn0.95Fe0.05O3 at the ferromagnetic–paramagnetic has been analyzed. The results show that the sample exhibited the second-order magnetic phase transition. The estimated critical exponents derived from the magnetic data using various such as modified d’Arrott plot Kouvel–Fisher method and critical magnetization M(T C, H). The critical exponents values for the La0.67Ba0.33Mn0.95Fe0.05O3 are close to those expected from the mean field model β = 0.504 ± 0.01 with T C = 275661 ± 0.447 (from the temperature dependence of the spontaneous magnetization below T C ), γ = 1.013 ± 0.017 with T C = 276132 ± 0.452 (from the temperature dependence of the inverse initial susceptibility above T C ), and δ = 3.0403 ± 0.0003. Moreover, the critical exponents also obey the single scaling equation of M(H, ε) = |ε| β f ±(H/|ε| β+γ ).  相似文献   

20.
The compound (NH4)3[UO2(CH3COO)3]2(NCS) (I) was synthesized and examined by single crystal X-ray diffraction analysis. The compound crystallizes in the rhombic system with the unit cell parameters a = 11.5546(4), b = 18.5548(7), c = 6.7222(3) Å, V = 1441.19(10) Å3, space group P21212, Z = 2, R = 0.0345. The uranium-containing structural units of crystals of I are isolated mononuclear groups [UO2(CH3COO)3]? belonging to crystal-chemical group AB 3 01 (A = UO 2 2+ , B01 = CH3COO?) of uranyl complexes. The specific features of packing of the uranium-containing complexes in the crystal structure are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号