首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Adding ultrasonic vibrations to conventional turning can improve the process in terms of cutting force, surface finish and so on. One of the most important factors in machining is the heat generation during the cutting process. In ultrasonic-assisted turning (UAT) the tool tip also vibrates at very high frequency and this sinusoidal motion causes complexity in heat modeling of the cutting system. Modeling and simulation of cutting processes can help to understand the nature of process and provides information to select optimum conditions and machining parameters. In this article, a finite element model has been developed for predicting tool tip temperature in UAT. The effect of machining parameters including cutting speed, feed rate and amplitude of vibration on the tool tip temperature has been investigated. In order to simplify the machining process, the cutting experiment has been carried out in dry condition. The results showed that by applying ultrasonic vibration to the cutting tool, the tool tip flash temperature increases but in some condition its average value could be less than the conventional machining.  相似文献   

2.
Ultrasonic-assisted machining is a machining operation based on the intermittent cutting of material which is obtained through vibrations generated by an ultrasonic system. This method utilizes low-amplitude vibrations with high frequency to prevent continuous contact between a cutting tool and a workpiece. Hot machining is another method for machining materials which are difficult to cut. The basic principle of this method is that the surface of the workpiece is heated to a specific temperature below the recrystallization temperature of the material. This heating operation can be applied before or during the machining process. Both of these operations improve machining operations in terms of workpiece-cutting tool characteristics. In this study, a novel hybrid machining method called hot ultrasonic-assisted turning (HUAT) is proposed for the machinability of Hastelloy-X material. This new technique combines ultrasonic-assisted turning (UAT) and hot turning methods to take advantage of both machining methods in terms of machining characteristics, such as surface roughness, stable cutting depths, and cutting tool temperature. In order to observe the effect of the HUAT method, Hastelloy-X alloy was selected as the workpiece. Experiments on conventional turning (CT), UAT, and HUAT operations were carried out for Hastelloy-X alloy, changing the cutting speed and cutting tool overhang lengths. Chip morphology was also observed. In addition, modal and sound tests were performed to investigate the modal and stability characteristics of the machining. The analysis of variance (ANOVA) method was performed to find the effect of the cutting speed, tool overhang length, and machining techniques (CT, UAT, HUAT) on surface roughness, stable cutting depths, and cutting tool temperature. The results show both ultrasonic vibration and heat improve the machining of Hastelloy-X. A decrease in surface roughness and an increase in stable cutting depths were observed, and higher cutting tool temperatures were obtained in UAT and HUAT compared to CT. According to the ANOVA results, tool overhang length, cutting speed, and machining techniques were effective parameters for surface roughness and stable cutting depths at a 1% significance level (p ≤ 0.01). In addition, cutting speed and machining techniques have an influence on cutting tool temperature at a 1% significance level (p ≤ 0.01). During chip analysis, serrated chips were observed in UAT and HUAT.  相似文献   

3.
对超声辅助切削而言,刀具振动频率是一项至关重要的影响因子。本文从理论上分析了刀具振动频率对超声切削的影响,并利用有限元软件MSC.Marc建立了超声切削的二维正交热力耦合模型,通过有限元仿真研究了刀具振动频率对切削应力和切削温度的影响规律。  相似文献   

4.
Aerospace aluminum alloys have gained the prime significance due to their excellent machining characteristics. Numerous experimental and numerical studies have been conducted to establish the optimum cutting parameters of these alloys. In the numerical cutting models, the authenticity of computational results is suspected particularly because of the complex interaction at tool–chip interface, which involves a high material strain rate and thermal processes. The fidelity of cutting simulation results is appraised by a parametric sensitivity analysis and actual experimentation. In this research, the orthogonal turning of AA2024-T351 aluminum is simulated in Abaqus/Explicit by using a thermoviscoplastic damage model and Coulomb friction model for the contact interfaces. A parametric sensitivity analysis is performed to comprehend the chip morphology, tool–chip interface temperature, reaction force, and strain. Different simulations are performed with varied cutting speeds (200, 400, 600, and 800 m/min), rake angles (5°, 10°, 14.8°, 17.5°), feeds (0.3, 0.4 mm), and friction coefficients (0.1, 0.15). It is observed that an increased rake angle decreases the cutting force and increases tool–chip interface temperature. Similarly, the cutting depth has prominent effect on chip–tool interface temperature as compared to the friction. The computational results are found in close approximation with the published experimental data of AA2024-T351.  相似文献   

5.
罗斐  涂宇  谭彬 《润滑与密封》2020,45(11):130-135
当使用AdvantEdge软件进行切削仿真实验时,刀屑摩擦因数对仿真结果的影响明显,但现有有限元软件未提供刀屑摩擦因数数据库。为建立一种基于AdvantEdge的斜角车削仿真实验的刀屑摩擦因数确定方法,首先提出基于斜角车削的摩擦力计算方法,然后建立AdvantEdge三维斜角车削仿真模型,设定不同切削速度、切削深度、进给量及摩擦因数,通过AdvantEdge仿真正交试验,获得刀屑摩擦因数的经验计算公式。为验证刀屑摩擦因数经验计算公式的正确性,设定不同切削速度和切削深度及进给量的斜角车削正交试验,获得切削力数据,并基于摩擦因数经验计算公式求得对应刀屑摩擦因数。利用求得的摩擦因数数据修改AdvantEdge中刀屑摩擦因数参数,进行残余应力切削仿真实验。仿真实验获得的残余应力与实际切削实验获得的残余应力相比,误差在10%以内,证明提出的刀屑摩擦因数确定方法是正确的。  相似文献   

6.
高速车削镍基高温合金GH4169的切削力仿真研究   总被引:1,自引:0,他引:1  
基于Deform 3D仿真软件建立了GH4169高温合金高速车削的有限元模型,采用四因素三水平正交试验方法研究了切削用量和刀具几何参数对切削力的影响规律,并建立了切削力经验公式。研究结果表明:在高速车削GH4169的过程中,对切削力影响最大的参数是切削深度,其次是进给量和前角,最后是刀尖圆弧半径;切削力随切削深度和进给量的增大而增大,随前角的增大呈现先降低又升高的趋势,而刀尖圆弧半径增大时切削力变化不大;最佳参数组合为:进给量0.2mm/r,切削深度0.4mm,前角10°,刀尖圆弧半径0.2mm。  相似文献   

7.
This paper aims at developing a statistical model to envisage vibration amplitude in terms of geometrical parameters such as radial rake angle, nose radius of cutting tool and machining parameters such as cutting speed, cutting feed and axial depth of cut. Experiments were conducted through response surface methodology experimental design. The material chosen is Aluminum (Al 7075-T6) and the tool used was high speed steel end mill cutter with different tool geometry. Two channels piezoelectric accelerometers were used to measure the vibration amplitude. The second order mathematical model in terms of machining parameters was built up to predict the vibration amplitude and ANOVA was used to verify the competency of the model. Further investigation on the direct and interactive effect of the process parameter with vibration amplitude was carried out for the selection of process parameter so that the vibration amplitude was maintained at the minimum which ensures the stability of end milling process. The optimum values obtained from end milling process are Radial rake angle-12°, Nose radius-0.8 mm, Cutting speed-115 m/min, Cutting feed rate-0.04 mm/tooth, axial depth of cut-2.5 mm. The vibration amplitude exhibited negative relationship with radial rake angle and nose radius. The dominant factors on the vibration amplitude are feed rate and depth of cut. Thus it is envisaged that the predictive models in this study could produce values of the vibration amplitude close to the experimental readings with a 95% confidence interval.  相似文献   

8.
涂层刀具车削淬硬钢时前刀面摩擦系数的自组织特征   总被引:1,自引:1,他引:0  
采用四种硬质合金涂层刀片对45和T10A淬硬钢两种材料进行了正交切削试验,通过所测得的三向切削力计算了前刀面平均摩擦系数,详细分析了前刀面摩擦系数随切削过程的变化情况,以及切削参数对摩擦系数的影响。结果表明前刀面摩擦系数随切削过程的进行迅速减小并趋于稳定,表征了涂层刀具切削淬硬钢时的自组织现象。  相似文献   

9.
In orthopedic operations, no sound solutions exist to avoid conditions like tool breakage, bone fracture/cracks and thermal necrosis for lacking understanding of the mechanics of the bone cutting process. In this work, analysis of variance (ANOVA) and regression analysis were performed to investigate effects of cutting conditions on cutting and thrust forces based on a full factorial design. Then applicability of Merchant's analysis for calculating cutting force with respect to rake angle and feed was evaluated by comparison with experiments. Finally, the friction coefficient was evaluated by calculation. ANOVA shows that forces are much more sensitive to feed, cutting direction and rake angle than to cutting speed. Regression equations including all four factors were obtained by introduction of dummy variables. Cutting forces from experiments and from Merchant's analysis are partially comparable (maximum relative error = 34%) when feed and rake angle are changed. Friction coefficient was affected by rake angle and cutting direction. Cutting speed had little effect on the coefficient. These results can deepen the understanding of the mechanics of the bone-cutting process and assist the development of innovative cutting devices and selection of favorable cutting conditions for the procedure.  相似文献   

10.
Prolongation of tool life in metal cutting is an effective factor to produce lower cutting forces and better machined surfaces. In this study, the influence of ultrasonic vibration is analyzed using experimental and numerical methods. Accordingly, turning tests are carried out on an AISI 4140 steel bar in two types of machining: conventional and ultrasonic-assisted turning. After verification of the developed model, tool wear results are discussed with respect to analysis of heat and stress distributed on tool faces. Finally, it was revealed that periodic movement of the cutting tool in vibratory turning resulted in reduced contact time, resulting in lower heat conduction from the deformed chip to tool rake face. As a result, lower wear has been propagated on tool faces compared to a tool worn in conventional turning. In addition, the effect of cutting parameters on surface roughness is investigated by measurement and 3D analysis of surface topography.  相似文献   

11.
This paper presents the optimization of cutting forces, average surface roughness, cutting temperature, and chip reduction coefficient in turning of Ti-6Al-4V alloy under dry and high pressure coolant (HPC) that is applied at the rake and flank surfaces simultaneously. The experimental design plan was conducted by the full factorial parameter orientation. The optimization has been conducted in two ways: firstly, by using signal-to-noise ratio-based Taguchi method as mono-objective optimization; secondly, by using gray relational analysis integrated with Taguchi method as multi-objective optimization. In either method, the cutting speed, feed rate, and cutting condition were considered as the inputs to the optimization. The mono-objective optimization concluded that the 156 m/min cutting speed and 0.12 mm/rev feed rate when run under HPC optimized the cutting forces and roughness, and when operated under dry optimized chip reduction coefficient, the cutting temperature was minimized at 78 m/min and 0.12 mm/rev feed rate. The multi-objective optimization concluded that Ti alloy turning system is optimized at 156 m/min cutting speed and 0.12 mm/rev feed rate under HPC.  相似文献   

12.
Micromachining has become a necessary manufacturing method. Developing and applying micro-milling are determined according to the increasingly influential progress of micro tool designs and the evolution of machine tool technologies. This study employed a tungsten carbide micro end mill with a diameter of 200 μm for the design model of the micro-milling SKD61 tool steel by the finite element method. This study first used the effective rake angle on an oblique cutting process to simplify the complicated geometric relationship of the micro end mill into the orthogonal cutting model. Simulation analysis will be conducted by using the four parameters of effective rake angle, relief angle, cutting velocity, and cutting depth designed according to the Taguchi orthogonal array. This study then evaluated the four micro-milling characteristics of cutting force, tool maximum temperature, distance between the tool maximal temperature point and the tool tip point, and tool–chip contact length. The results of ANOVA show that the most influential simulation parameter on micro-milling is effective rake angle, followed by cutting velocity, cutting depth, and relief angle. The empirical results indicate that the proposed method can serve as a design base for developing and applying the micro end mill.  相似文献   

13.
In machining, the percentage of heat flux that enters the cutting tool can have a critical impact on tool wear especially in dry cutting or high speed machining. In previous work, heat partition was evaluated by iteratively reducing the secondary deformation zone heat flux to the tool until the finite element simulated temperatures matched the experimental measured rake face temperatures. This follow-on work quantifies the contribution of primary zone heat flux to heat partition in machining. In this study, an analytical model was used to evaluate the rise in chip temperature due to primary deformation zone heat source. The heat partition and thermal modelling on the rake face was then conducted with an appropriate initial rake face temperature. Thus primary zone heat loads and shear-force-derived secondary zone heat flux were applied in finite element transient heat transfer analysis to evaluate heat flux into the cutting tool. External dry turning of AISI/SAE 4140 with tungsten carbide-based multilayer TiCN/Al2O3-coated tools was conducted for a wide range of cutting speeds between 314 and 879 m/min. Results further support the dominance of secondary zone heat flux on heat partition. The contribution of primary zone heat generation to the cutting tool heat flux in machining was less than 9.5 %. These findings suggest that, to address the thermal problem in machining, research and development should also focus on reducing friction on the rake face (e.g. coating innovations) and reducing contact areas (e.g. rake face design) in addition to the modification of shear angle and hence primary zone heat intensity.  相似文献   

14.
Using a diamond cutting tool in the precision turning process, the vibration of tool-tip has an undesirable effect on the machined surface??s quality. The objective of this paper is to present the mathematical models for modeling and analyzing the vibration and surface roughness in the precision turning with a diamond cutting tool. Machining parameters including the spindle speed, feed rate and cutting depth were chosen as numerical factor, and the status of lubrication was regarded as the categorical factor. An experimental plan of a four-factor??s (three numerical plus one categorical) D-optimal design based on the response surface methodology was employed to carry out the experimental study. A micro-cutting test is conducted to visualize the effect of vibration of tool-tip on the performance of surface roughness. With the experimental values up to a 95% confidence interval, it is fairly well for the experimental results to present the mathematical models of the vibration and surface roughness. Results show that the spindle speed and the feed rate have the greatest influence on the longitudinal vibration amplitude, and the feed rate and the cutting depth play major roles for the transverse vibration amplitude. As the spindle speed increases, the overall vibration of tool-tip tends to more stable condition which leads to the results of the best machined surface. The effects of the feed rate and cutting depth provide the reinforcement on the overall vibration to cause the unstability of cutting process and exhibit the result of the worst machined surface.  相似文献   

15.
以直刃尖刀超声辅助切割Nomex蜂窝芯的简化模型为基础,建立基于脆性断裂力学理论的超声辅助切削动态力模型,并分情况讨论了刀具与材料间的相对运动关系。分析指出在不同振幅条件下,材料的切割破坏存在断续和连续两种形式,进而推导了切割过程中的切削力的理论公式。其中超声振幅、刀具前倾角、进给速度和超声频率等参数对材料切削力大小均有影响。在理论分析的基础上,开展了超声辅助切割Nomex蜂窝芯复合材料实验。试验结果表明,进给方向的超声振幅和刀具前倾角对切削力的影响较大:当进给方向的超声振幅从0到15 μm变化、刀具前倾角从15°到45°变化时,切削力均可降低70%~80%;进给速度和超声频率对于切削力影响较小:当进给速度从500到6000 mm/min变化12倍时,切削力仅变为1.5倍;超声频率35 kHz与15 kHz相比,切削力降低10%~30%。试验结果与理论分析结论一致。  相似文献   

16.
刀具切削温度对刀具寿命、刀具磨损等有重要影响。因此在实际加工之前预测出刀具温度,对合理选择切削参数、优化数控程序等均具有重要意义。平面铣削等断续切削过程的热条件不同于车削等连续切削过程。用数学物理方法建立了平面铣削过程刀具的一维传热学模型,用解析的方法预测平面铣削过程中刀具前刀面的温度分布,考虑了刀具切出时空气强化对流散热对刀具前刀面温度的影响。结果表明,刀具切入时间和切出时间对刀具温度有较大影响。用文献中断续车削刀具温度实验数据对铣削刀具前刀面温度的传热学预测模型进行了验证,结果表明二者趋势一致,但平面铣削预测的刀具温度略低于断续车削的刀具温度。  相似文献   

17.
《Wear》2002,252(1-2):135-149
A modeling of diffusion wear is proposed for high speed cutting processes. Diffusion at the tool–chip interface is controlled by the contact temperature. Cratering and tool life are analyzed in terms of cutting conditions (cutting velocity, feed, rake angle), friction characteristics and material properties. Optimal cutting conditions can be found with respect to tool life and volume of material removal. Comparison with experimental observations show the potentiality of the modeling.  相似文献   

18.
由于现代数控刀具都设计有卷屑槽,从而使其前刀面不是平面,而是曲面。本文针对前刀面为圆柱面的一部分时,采用向量矩阵法建立最大前角计算的数学模型,应用该模型可以在给定条件下,计算曲面型前刀面车刀的最大前角和其它重要的几何参数。最后,给出了计算实例。  相似文献   

19.
A method is proposed to suppress regenerative chatter in turning operation, in which the ultrasonic elliptical vibration is added on the cutting tool. It results in the fact that the cutting tool is separated periodically from the chip and the workpiece, and the direction of the frictional force between the rake face of the cutting tool and the chip is reversed in each cycle of the ultrasonic elliptical vibration. The experimental investigations show that the regenerative chatter occurring in ordinary turning operation can be suppressed effectively by applying the ultrasonic elliptical vibration on the cutting tool. In order to clearify the reason of the regenerative chatter suppression, theoretical analysis and computer simulation are performed on turning with ultrasonic vibration. There is a good agreement among the experimental investigations, theoretical analysis and the computer simulation.  相似文献   

20.
王仁伟  邵芳  何玲 《工具技术》2017,51(4):63-65
运用有限元方法对钛合金环槽车削过程进行数值模拟计算,得到硬质合金切槽车刀表面的温度,并应用Usui磨损理论计算刀具磨损速率。通过改变切削速度和进给量,获得不同工艺参数下刀具最高温度及刀具前刀面磨损速率。对环槽车削过程的热力耦合模拟结果进行分析,获得刀具切削过程中的温度及磨损速率的变化规律。结果表明,刀具温度和刀具前刀面磨损速率与工艺参数之间存在密切关系,合理选择工艺参数能有效提高硬质合金切槽车刀的性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号