首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bluish coloured glasses are obtained from the composition PbCl\(_{2}\)–PbO–B\(_{2}\)O\(_{3}\) doped with Cu\(^{2+}\) ions. Basic physical properties and spectroscopic studies (optical absorption, electron paramagnetic resonance, Fourier transform infrared and Raman spectroscopies) were carried out on these samples. The increase in PbCl\(_{2}\) content resulted in the decrease in density and increase in molar volume. At optical frequencies, band gaps and Urbach energies were evaluated and their variation is explained. Spin-Hamiltonian parameters (SHP) obtained from the EPR spectra suggest that the ligand environment around Cu\(^{2+}\) is tetragonally distorted octahedral sites and the orbital \(d_{x^{2}-{y}^{2}} \) is the ground state. The characteristics broad bands in the optical absorption spectra are assigned to the \(^{2}\)B\(_{\mathrm{1g}}\,\rightarrow \, {}^{2}\)B\(_{\mathrm{2g}}\) transition. The bonding coefficient values were evaluated using optical data and SHP. FTIR studies suggested that the glass structure is built up of BO\(_{3}\) and BO\(_{4}\) units. The presence of diborate, pyroborate, pentaborate groups, etc. in the glass network was confirmed from Raman spectra.  相似文献   

2.
The new kröhnkite compound called potassium calcium-bis-hydrogen arsenate dihydrate K\(_{2}\)Ca(HAsO\(_{4})_{2}\cdot \)2H\(_{2}\)O was obtained by hydrothermal method and characterized by X-ray diffraction, infrared spectroscopy, Raman scattering, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis and optical (photoluminescence and absorption) properties. It crystallizes in the triclinic space group P\(\bar{1}\) and unit cell parameters \(a = 5.971(3)\) Å, \(b =6.634(3)\) Å, \(c = 7.856(4)\) Å, \(\alpha =104.532(9)\) \(^{\circ }\), \(\beta = 105.464(9)\) \(^{\circ }\) and \(\gamma = 109.698(9)\) \(^{\circ }\). The structure of K\(_{2}\)Ca(HAsO\(_{4})_{2}\cdot \)2H\(_{2}\)O built up from this infinite, (Ca(HAsO\(_{4})_{2}\)(H\(_{2}\)O)\(_{2})^{2+}\), was oriented along an axis resulting from the association of CaO\(_{6}\) octahedra alternating with each two HAsO\(_{4}\) tetrahedra by sharing corners. Each potassium atom links two adjacent chains by three oxygen atoms of HAsO\(_{4}\) tetrahedra. TGA and DSC have shown the absence of phase transition. The existence of vibrational modes corresponding to the kröhnkite is identified by the IR and Raman spectroscopies in the frequency ranges of 400–4000 and 20–4000 cm\(^{-1}\), respectively. The photoluminescence measurement show one peak at 507 nm, which is attributed to band–band (free electron–hole transitions) and (bound electron–hole transitions) emissions within the AsO\(_{4}\) inorganic part.  相似文献   

3.
We prepared a lead-free ceramic (\(\hbox {Ba}_{0.85}\hbox {Ca}_{0.15})(\hbox {Ti}_{1-x}\hbox {Zr}_{x})\hbox {O}_{3}\) (BCTZ) using the conventional mixed oxide technique. The samples were prepared by an ordinary mixing and sintering technique. In this study we investigated how small amounts of \(\hbox {Zr}^{4+}\) can affect the crystal structure and microstructure as well as dielectric and piezoelectric properties of \(\hbox {BaTiO}_{3}\). X-ray diffraction analysis results indicate that no secondary phase is formed in any of the BCTZ powders for \(0 \le x \le 0.1\), suggesting that \(\hbox {Zr}^{4+}\) diffuses into \(\hbox {BaTiO}_{3}\) lattices to form a solid solution. Scanning electron microscopy micrographs revealed that the average grain size gradually increased with \(\hbox {Zr}^{4+}\) content from 9.5 \(\upmu \!\hbox {m}\) for \(x = 0.02\) to 13.5 \(\upmu \!\hbox {m}\) for \(x = 0.1\); Curie temperature decreased due to the small tetragonality caused by \(\hbox {Zr}^{4+}\) addition. Owing to the polymorphic phase transition from orthorhombic to tetragonal phase around room temperature, it was found that the composition \(x = 0.09\) showed improved electrical properties and reached preferred values of \(d_{33} = 148\) pC \(\hbox {N}^{-1}\) and \(K_{\mathrm{p}} = 27\%\).  相似文献   

4.
The layered Li-TM-\(\hbox {O}_{2}\) materials have been investigated extensively due to their application as cathodes in Li batteries. The electrical properties of these oxides can be tuned or controlled either by non-stoichiometry or substitution. Hence the thermo-transport properties of Zn-substituted \(\hbox {LiNi}_{1-x}\hbox {Zn}_{x}\hbox {O}_{2}\) for \(0 \le x \le 0.16\) have been investigated in the temperature range of 300–900 K for potential application as a high-temperature thermoelectric material. For \(x < 0.08\), the compounds were of single phase belonging to the space group R-3mH while for \(x > 0.08\) an additional minority phase, ZnO forms together with the main layered phase. All the compounds exhibit a semiconducting behaviour with electrical resistivity, varying in the range of  \(\sim 10^{-4}\) to \(10^{-2}\,\,\Omega \hbox {m}\) between 300 and 900 K. The electrical resistivity is found to increase with increasing Zn-substitution predominantly due to a decrease in the charge carrier hole mobility. The activation energy remains constant, \(\sim \)10  meV, with Zn-substitution. The Seebeck coefficient of the compounds is found to decrease with increasing temperature and increase with increasing Zn-substitution. The Seebeck coefficient decreases from \(\sim \)95 to \(35\ \upmu \hbox {V K}^{-1}\) and the corresponding power factor is \(\sim \)12\(\ \upmu \hbox {W m}^{-1}\ {\hbox {K}}^{-2}\) for the \(x = 0.16\) compound.  相似文献   

5.
NiWP alloy coatings were prepared by electrodeposition, and the effects of ferrous chloride (\(\hbox {FeCl}_{2})\), sodium tungstate (\(\hbox {Na}_{2}\hbox {WO}_{4})\) and current density (\(D_{\mathrm{K}}\)) on the properties of the coatings were studied. The results show that upon increasing the concentration of \(\hbox {FeCl}_{2}\), initially the Fe content of the coating increased and then tended to be stable; the deposition rate and microhardness of coating decreased when the cathodic current efficiency (\(\eta \)) initially increased and then decreased; and for a \(\hbox {FeCl}_{2}\) concentration of \(3.6\, \hbox {g\,l}^{-1}\), the cathodic current efficiency reached its maximum of 74.23%. Upon increasing the concentration of \(\hbox {Na}_{2}\hbox {WO}_{4}\), the W content and microhardness of the coatings increased; the deposition rate and the cathode current efficiency initially increased and then decreased. The cathodic current efficiency reached the maximum value of 70.33% with a \(\hbox {Na}_{2}\hbox {WO}_{4}\) concentration of 50 g \(\hbox {l}^{-1}\), whereas the deposition rate is maximum at 8.67 \(\upmu \hbox {m}\,\hbox {h}^{-1}\) with a \(\hbox {Na}_{2}\hbox {WO}_{4}\) concentration of \(40\, \hbox {g\,l}^{-1}\). Upon increasing the \(D_{\mathrm{K}}\), the deposition rate, microhardness, Fe and W content of the coatings increased, the cathodic current efficiency increases first increased and then decreased. When \(D_{\mathrm{K}}\) was 4 A dm\(^{-2}\), the current efficiency reached the maximum of 73.64%.  相似文献   

6.
Structural and optical properties of \(\text {WO}_{3}/\text {Ag}/\text {WO}_{3}\) nano-multilayer composites were investigated for heat mirror applications. \(\text {WO}_{3}/\text {Ag}/\text {WO}_{3}\) thin films were fabricated through a physical vapour deposition method by using electron-beam evaporation at the vacuum chamber at 10\(^{-5}\) Torr. \(\text {WO}_{3}\) nano-layer was fabricated at 40 nm. Annealing treatment was carried out at 100, 200, 300 and 400\(^{\circ }\)C for 1 h after the deposition of first layer of \(\text {WO}_{3}\) on the glass. On \(\text {WO}_{3}\) film, Ag nano-layers with 10, 12 or 14 nm thickness were deposited. Individual layers morphology was investigated using atomic force microscopy (AFM) and deduced that a smoother layer can be achieved after the annealing at 300\(^{\circ }\)C. Ellipsometry analysis was executed to determine both layers, Ag film thickness and inter-diffusion between the \(\text {WO}_{3}\)–Ag–\(\text {WO}_{3}\) layers. It was inferred that there was almost no interfering among the \(\text {WO}_{3}\)\(\text {WO}_{3 }\) layers in the samples with 12 and 14 nm Ag thickness; while silver was deposited on the annealed \(\text {WO}_{3}\) layer at 300\(^{\circ }\)C. UV–visible spectrophotometer showed that the annealing treatment of the first \(\text {WO}_{3}\) layer enhanced the transparency of films in the visible region. The innovations of the present study have been based on the annealing of the films and finding an optimum thickness for the Ag film at 12–14 nm. Heat mirrors efficiency was assessed according to the principle of their optical behaviour and optimum performance obtained for 14 nm of Ag film, deposited on annealed tungsten oxide at 300\(^{\circ }\)C.  相似文献   

7.
The electrical and thermal properties with respect to the crystallization in \(\hbox {V}_{2}\hbox {O}_{5}\) thin films were investigated by measuring the resistance at different temperatures and applied voltages. The changes in the crystal structure of the films at different temperatures were also explored using Raman measurements. The thermal diffusivity of the crystalline \(\hbox {V}_{2}\hbox {O}_{5}\) film was measured by the nanosecond thermoreflectance method. The microstructures of amorphous and crystalline \(\hbox {V}_{2}\hbox {O}_{5}\) were observed by SEM and XRD measurements. The temperature-dependent Raman spectra revealed that a structural phase transition does not occur in the crystalline film. The resistance measurements of an amorphous film indicated semiconducting behavior, whereas the resistance of the crystalline film revealed a substantial change near \(250\,{^{\circ }}\hbox {C}\), and Ohmic behavior was observed above \(380\,{^{\circ }}\hbox {C}\). This result was due to the metal–insulator transition induced by lattice distortion in the crystalline film, for which \(T_{\mathrm{c}}\) was \(260\,{^{\circ }}\hbox {C}\). \(T_{\mathrm{c}}\) of the film decreased from 260 \({^{\circ }}\hbox {C}\) to \(230\,{^{\circ }}\hbox {C}\) with increasing applied voltage from 0 V to 10 V. Furthermore, the thermal diffusivity of the crystalline film was \(1.67\times 10^{-7}\,\hbox {m}^{2}\cdot \hbox {s}^{-1}\) according to the nanosecond thermoreflectance measurements.  相似文献   

8.
Electrodeposited ZnO coatings suffer severe capacity fading when used as conversion anodes in sealed Li cells. Capacity fading is attributed to (i) the large charge transfer resistance, \(R_{\mathrm{ct}}\) (300–700 \(\Omega \)) and (ii) the low \(\hbox {Li}^{+}\) ion diffusion coefficient, \(D_{\mathrm{Li}}^{+}\ (10^{-15}\) to \(10^{-13}\hbox { cm}^{2}\hbox { s}^{-1})\). The measured value of \(R_{\mathrm{ct}}\) is nearly 10 times higher and \(D_{\mathrm{Li}}^{+}\) 10–100 times lower than the corresponding values for \(\hbox {Cu}_{2}\hbox {O}\), which delivers a stable reversible capacity.  相似文献   

9.
In this work, lanthanide \(\beta \)-diketonate complexes Ln(btfa)\({}_{3} \cdot 2\hbox {H}_{2}\)O (Ln\(^{3+}\): Eu\(^{3+}\), Sm\(^{3+ }\), and Tb\(^{3+}\); btfa: 4,4,4-trifluoro-l-phenyl-1,3-butanedione) were incorporated into silica gels by a sol–gel method. Photoacoustic (PA) spectra of these complex-doped silica samples were measured and studied. The PA intensity of the \(\beta \)-diketonate ligand is nearly the same for lanthanide complexes in wet gels. After heat treatment at 150 \(^{\circ }\)C, however, the PA intensity of the ligand increases for Eu\(^{3+}\), Sm\(^{3+}\), and Tb\(^{3+}\) complexes in silica gels, respectively. Different PA intensities of the samples are interpreted by comparison with their luminescence spectra. The luminescence result is consistent with the PA spectra. The result indicates that lanthanide \(\beta \)-diketonate complexes cannot be formed in silica gels without a suitable heat treatment. Moreover, the relaxation process model is proposed based on the PA and luminescence results.  相似文献   

10.
DyNi\(_{2}\)B\(_{2}\)C superconducts at \(T_{c} \approx 6\,{\text{K}}\) and orders antiferromagnetically at \(T_{N}\approx 10\,{\text{K}}.\) Its non-superconducting isomorph DyCo\(_{2}\)B\(_{2}\)C is a ferromagnet with \(T_{C}\approx 6\,{\text{K}}.\) With the aim of mapping out the magnetic properties, in particular magnetic structures, of their solid solutions, we synthesized \(^{11}\)B-enriched Dy(Co\(_{x}\)Ni\(_{1-x}\))\(_{2}\)B\(_{2}\)C (\(x=0.2,0.4,0.6,0.8\)). We investigated the evolution of their magnetic, thermal and transport properties by means of the magnetization, resistivity, specific heat and neutron diffraction techniques. Their crystal structures were confirmed to be ThCr\(_{2}\)-Si\(_{2}\)-type tetragonal (I4/mmm) phase. The magnetic structure was found to be antiferromagnetic with k0.2 = (0, 0, 1) for x = 0.2; helicoidal with k\(_{0.4}\) = (0, 0, 0.49) and k\(_{0.6}\) = (0, 0, 0.46) for, respectively, x = 0.4 and 0.6 and ferromagnetic with k\(_{0.8}\) = (0, 0, 0) for x = 0.8. We discuss the evolution of such magnetic modes assuming a scenario of an idealized one-dimensional chain of transverse magnetic moments.  相似文献   

11.
The effect of Ba(\(\hbox {Mg}_{1/8}\hbox {Nb}_{3/4})\hbox {O}_{3}\) phase on structure and dielectric properties of \(\hbox {Ba(Mg}_{1/3}\hbox {Nb}_{2/3})\hbox {O}_{3}\) was studied by synthesizing \((1{-}x)\hbox {Ba(Mg}_{1/3}\hbox {Nb}_{2/3})\hbox {O}_{3}{-}x\hbox {Ba}(\hbox {Mg}_{1/8}\hbox {Nb}_{3/4})\hbox {O}_{3}\) (\(x = 0\), 0.005, 0.01 and 0.02) ceramics. Superlattice reflections due to 1:2 ordering appear as low as \(1000^{\circ }\hbox {C}\). \(\hbox {Ba}(\hbox {Mg}_{1/3}\hbox {Nb}_{2/3})\hbox {O}_{3}\) forms solid solution with \(\hbox {Ba}(\hbox {Mg}_{1/8}\hbox {Nb}_{3/4})\hbox {O}_{3}\) for all ‘x’ values studied until \(1350^{\circ }\hbox {C}\). Ordering was confirmed by powder X-ray diffraction pattern, Raman study and HRTEM. Ceramic pucks can be sintered to density \({>}92\%\) of theoretical density. Temperature and frequency-stable dielectric constant and nearly zero dielectric loss (tan \(\delta \)) were observed at low frequencies (20 MHz). The sintered samples exhibit dielectric constant (\(\varepsilon _{\mathrm{r}})\) between 30 and 32, high quality factor between 37000 and 74000 GHz and temperature coefficient of resonant frequency (\(\tau _{\mathrm{f}})\) between 21 and \(24\hbox { ppm }^{\circ }\hbox {C}^{-1}\).  相似文献   

12.
A novel, highly visible light active N-doped \(\hbox {WO}_{3}\) (\(\hbox {N}\)-\(\hbox {WO}_{3})\) is successfully synthesized via thermal decomposition of peroxotungstic acid–urea complex. The photocatalytic activity of \(\hbox {N}\)-\(\hbox {WO}_{3}\) is evaluated for the degradation of amaranth (AM) dye under visible and UVA light along with the role of reactive species, which has not yet been studied for \(\hbox {N}\)-\(\hbox {WO}_{3}\) photocatalysts. Doping of N into substitutional and interstitial sites of \(\hbox {WO}_{3}\) is confirmed by X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy. At a pH of 7, 1 g \(\hbox {l}^{-1}\) of \(\hbox {N}\)-\(\hbox {WO}_{3}\) can completely degrade \(10\,\hbox {mg } \hbox {l}^{-1}\) of AM within 1 h under visible and UVA light. For the degradation of AM by \(\hbox {N}\)-\(\hbox {WO}_{3}\) under visible and UVA light, \(\hbox {h}^{+}\) is found to be the main reactive species, while \(\cdot \hbox {OH}\) contributes to a lesser extent. On the contrary, \(^{1}\hbox {O}_{2}, \cdot \hbox {O}_{2}^{-}\) and \(\hbox {e}^{-}\) show negligible roles. The crucial role of \(\hbox {h}^{+}\) indicates effective suppression of electron–hole recombination after N doping. Dye sensitization and oxidation by reactive species are found to be the major pathway for the degradation of AM under visible and UVA light, respectively.  相似文献   

13.
Molten nitrate salt is usually employed as heat transfer or energy storage medium in concentrating solar power systems to improve the overall efficiency of thermoelectric conversion. In the present work, the liquidus curves of the \(\hbox {LiNO}_{3}\)\(\hbox {NaNO}_{3}\)\(\hbox {KNO}_{3}\)\(\hbox {Ca}(\hbox {NO}_{3})_{2}\) system is determined by conformal ionic solution theory according to the solid–liquid equilibrium state of the binary mixture. The calculated eutectic temperature of the mixture is \(93.17\,{^{\circ }}\hbox {C}\), which is close to the experimental value of \(93.22\,{^{\circ }}\hbox {C}\) obtained from differential scanning calorimetry (DSC). Visualization observation experiments reveal that the quaternary eutectic mixture begins to partially melt when the temperature reaches \(50\,{^{\circ }}\hbox {C}\), and the degree of melting increases with temperature. The mixture is completely melted at \(\hbox {130}\,{^{\circ }}\hbox {C}\). The observed changes in the dissolved state at different temperatures correlate well with the DSC heat flow curve fluctuations.  相似文献   

14.
In the present work, pristine and cetyl trimethyl ammonium bromide (CTAB)-coated ferric oxide nanoparticles \((\hbox {CTAB@Fe}_{2}\hbox {O}_{3} \hbox { NPs})\) were synthesized and studied as enzyme mimics. The w/w ratio of \(\hbox {Fe}_{2}\hbox {O}_{3}\) to CTAB was varied as 1:1 and 1:2. Transmission electron microscopic analysis revealed that pristine NPs had an average size of 50 nm, whereas the presence of CTAB resulted in the formation of nanorods with length of 130 nm. BET studies confirmed enhancement of surface area on CTAB coating, which was maximum for w/w ratio 1:1. The synthesized pristine NPs and CTAB-coated NPs were evaluated for their peroxidase mimic activity using o-dianisidine dihydrochloride as substrate. Optimum pH, temperature, substrate and NPs concentration for the reaction were 1, \(25^{\circ }{\mathrm{C}}\), \(0.16~\hbox {mg}~\hbox {ml}^{-1}\) and \(1~\hbox {mg}~\hbox {ml}^{-1}\), respectively. Peroxidase mimic activity of \(\hbox {CTAB@Fe}_{2}\hbox {O}_{3}\hbox { NPs}\) (w/w 1:1) was higher than that of pristine NPs. However, further increase in CTAB coating (w/w 1:2) resulted in lowering of peroxidase mimic activity. Kinetic analysis was carried out at optimized conditions; maximum velocity (\(V_{\mathrm{max}})\) and Michaelis constant (\(K_{\mathrm{m}})\) value of \(\hbox {CTAB@Fe}_{2}\hbox {O}_{3}\hbox { NPs}\) at 1:1 w/w ratio were 7.69 mM and \(1.12~\upmu \hbox {mol}~\hbox {s}^{-1}\), respectively.  相似文献   

15.
We report the effects of annealing in conjunction with \(\hbox {CdCl}_{2}\) treatment on the photovoltaic properties of \(\hbox {CdTe/Zn}_{0.1}\hbox {Cd}_{0.9}\)S thin film solar cells. CdTe layer is subjected to dry \(\hbox {CdCl}_{2}\) treatment by thermal evaporation method and subsequently, heat treated in air using a tube furnace from 400 to \(500{^{\circ }}\hbox {C}\). AFM and XRD results show improved grain size and crystallographic properties of the CdTe film with dry \(\hbox {CdCl}_{2}\) treatment. This recrystallization and grain growth of the CdTe layer upon \(\hbox {CdCl}_{2}\) treatment translates into improved photo-conversion efficiencies of \(\hbox {CdTe/Zn}_{0.1}\hbox {Cd}_{0.9}\)S cell. The results of dry \(\hbox {CdCl}_{2}\) treatment were compared with conventional wet \(\hbox {CdCl}_{2}\) treatment. Photo-conversion efficiency of 5.2% is achieved for dry \(\hbox {CdCl}_{2}\)-treated cells in comparison with 2.4% of wet-treated cell at heat treatment temperature of \(425{^{\circ }}\hbox {C}\).  相似文献   

16.
Tetragonal \(\text {NaY}(\text {MoO}_{4})_{2}\) (NYM) phosphors co-doped with \(\hbox {Yb}^{3+}\) and \(\hbox {Tm}^{3+}\) ions were synthesized through microwave hydrothermal method followed by calcining treatment. Powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and photoluminescence spectra were used to characterize the properties of as-prepared samples. The results show that \(\hbox {Yb}^{3+}\)/\(\hbox {Tm}^{3+}\) co-doped NYM displayed bright blue emission near 472 and 476 nm (\(^{1}\hbox {G}_{4}\rightarrow {}^{3}\hbox {H}_{6}\) transition), strong near-infrared upconversion (UC) emission around 795 nm (\(^{3}\hbox {H}_{4}\rightarrow {}^{3}\hbox {H}_{6}\) transition). The optimum doping concentrations of \(\hbox {Yb}^{3+}\) and \(\hbox {Tm}^{3+}\) for the most intense UC luminescence were obtained, and the related UC mechanism of \(\hbox {Yb}^{3+}\)/\(\hbox {Tm}^{3+}\) co-doped NYM depending on pump power was studied in detail.  相似文献   

17.
The tetragonal scheelite-type \(\hbox {Sm}^{3+}\hbox {/Bi}^{3+}\) ions co-doped with \(\hbox {NaLa}(\hbox {MoO}_{4})_{2}\) phosphors were synthesized by a facile sol–gel and combustion process using citric acid as complexing agent. The crystal structure and morphology of these as-prepared samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Furthermore, UV-absorption and the photoluminescence (PL) properties of these phosphors were systematically investigated and the PL of the phosphors shows strong white light emissions. Efficient energy transfer from the \(\hbox {MoO}_{4}^{2-}\) group or \(\hbox {Bi}^{3+}\) ions to \(\hbox {Sm}^{3+}\) ions was established by PL investigation excited at 405 nm. The PL intensity of the studied materials was investigated as a function of different \(\hbox {Sm}^{3+}\) and \(\hbox {Bi}^{3+}\) concentrations. The PL investigations revealed that the phosphors exhibit apparent characteristic emissions, which is ascribed to the transition from the ground state energy level \(^{4}\hbox {G}_{5/2}\) to excited state energy levels \(^{6}\hbox {H}_{\mathrm{J}}\) (\(J= 5/2, 7/2, 9/2\)) and the \(\hbox {NaLa}(\hbox {MoO}_{4})_{2}\): 4 mol% \(\hbox {Sm}^{3+}\) and \(\hbox {NaLa}(\hbox {MoO}_{4})_{2}\): 4 mol% \(\hbox {Sm}^{3+}\), 8 mol% \(\hbox {Bi}^{3+}\) present white emissions with the CIE coordinates of (0.350, 0.285) and (0.285, 0.229), respectively. The absolute quantum efficiencies of the phosphors are 40% (\(\hbox {NaLa}(\hbox {MoO}_{4})_{2}\): 4 mol% \(\hbox {Sm}^{3+}\)) and 52% (\(\hbox {NaLa}(\hbox {MoO}_{4})_{2}\): 4 mol% \(\hbox {Sm}^{3+}\), 8 mol% \(\hbox {Bi}^{3+}\)), respectively.  相似文献   

18.
Samarium (\(\hbox {Sm}^{3+})\) doped magnesium zinc sulfophosphate glass system of composition (60–\(x)\hbox {P}_{2}\hbox {O}_{5}\)–20MgO–20ZnSO\(_{4}\)\(x\hbox {Sm}_{2}\hbox {O}_{3}\) (\(x =\) 0.0, 0.5, 1.0, 1.5 and 2.0 mol%) were synthesized using melt-quenching technique. The structure and physical properties of prepared glass samples were characterized. The X-ray diffraction pattern verified their amorphous nature. The physical properties such as density, refractive index, molar volume, rare earth ion concentration, etc. were calculated. The decrease in the optical bandgap energy with increasing \(\hbox {Sm}_{2}\hbox {O}_{3}\) contents was attributed to the alteration in the glass network structures. Fourier transformed infrared spectra and Raman analyses manifested the depolymerization of \(\hbox {ZnSO}_{4}\) in the phosphate host matrix. The present findings may be beneficial for the advancement of functional glasses.  相似文献   

19.
Undoped and Eu-doped \(\hbox {CaSnO}_{3}\) nanopowders were prepared by a facile sol–gel auto-combustion method calcined at \(800{^{\circ }}\hbox {C}\) for 1 h. The samples are found to be well-crystallized pure orthorhombic \(\hbox {CaSnO}_{3}\) structure. Photoluminescence (PL) measurements indicated that the undoped sample exhibits a broad blue emission at about 420–440 nm, which can be recognized from an intrinsic centre or centres in \(\hbox {CaSnO}_{3}\). Eu-doped \(\hbox {CaSnO}_{3}\) showed broad blue emission centred about 434 nm, a weak peak at 465 nm and a sharp intense yellow emission line at 592 nm. The emission situated at 592 nm was assigned to the f–f transition of \(^{5}\hbox {D}_{0}\rightarrow ^{7}\hbox {F}_{1}\) in \(\hbox {Eu}^{3+}\) ions. The afterglow emission and PL decay results in Eu-doped \(\hbox {CaSnO}_{3}\) phosphor, which revealed that there are at least two different traps in this phosphor. From the obtained results, \(\hbox {Eu}^{3+}\)-doped \(\hbox {CaSnO}_{3}\) phosphor could be proposed as a potential white luminescent optical material.  相似文献   

20.
The \(\hbox {Sr}_{0.88}\hbox {Bi}_{0.12}\hbox {TiO}_{3}/\hbox {SrTi}_{0.92}\hbox {Mg}_{0.08}\hbox {O}_{3}\) (SBTO/STMO) heterostructure films were prepared on \(\hbox {p}^{+}\hbox {-Si}\) substrates by sol–gel spin-coating technique, and the films had good crystallinity and uniform grain distribution. The heterostructure films with a structure of Ag/SBTO/STMO/\(\hbox {p}^{+}\hbox {-Si}\) exhibited a bipolar, remarkable resistance-switching characteristic, and \(R_{\mathrm{HRS}}/R_{\mathrm{LRS}}\,\,{\sim }10^{4}\). More importantly, the heterostructure films showed rectifying characteristic in the low resistance state (LRS), and the rectification ratio can reach \(10^{2 }\) at \(\pm 1\hbox { V}\). The dominant resistive-switching conduction mechanism of high resistance state (HRS) was Ohmic behaviour, and the LRS changed to space charge-limited current (SCLC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号