首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 63 毫秒
1.
一种混沌粒子群混合算法研究   总被引:2,自引:0,他引:2  
提出了一种混沌粒子群混合算法,该算法综合了粒子群算法全局寻优的高效性和混沌算法局部搜索的随机性和遍历性.通过对几种函数的测试,结果表明该算法的搜索效率和寻优精度高于一般的粒子群算法和改进的粒子群算法.  相似文献   

2.
粒子群优化粒子滤波算法能有效改善粒子退化问题,但其适应度函数受量测噪声方差影响较大,限制了滤波精度的提高.为此,提出了一种基于粒子群优化的粒子滤波改进算法.该算法给出一种新的适应度函数,用当前状态估计值与各粒子状态的差值大小作为评价标准,使得最终优化粒子受噪声方差影响减小,在量测模型精度高的场合中提高了滤波精度.理论分析及仿真结果表明,本文所提算法的滤波性能优于标准粒子滤波与粒子群优化粒子滤波算法.  相似文献   

3.
由于标准粒子群算法(SPSO)存在后期搜索效率太低的问题,提出了一种速度更快的粒子群优化算法(FPSO).FPSO保留了SPSO前期的全局搜索能力,但改变了SPSO算法后期的搜索策略,使其迭代次数随当前适应度值的变化而自适应改变,从而提高了SPSO算法后期的计算效率.通过实验对FPSO算法中适应度函数的设计进行了讨论,并分析了FPSO算法的应用前景.仿真结果表明,FPSO算法在单峰、多峰和带约束条件的测试函数中都有良好的效果.  相似文献   

4.
由于粒子群优化算法对多极值复杂问题求解时容易陷入局部极值,提出一种新改进的粒子群优化算法。该改进算法是将粒子群进化过程分为两个不同的阶段,每个阶段应用不同的进化模型,通过结合这两种进化模型的各自优点有效地降低群体陷入局部最优。由仿真实验结果可知,对于复杂多极值函数优化问题,本文算法比标准粒子群优化算法的全局寻优能力更强。  相似文献   

5.
一种带交叉算子的改进的粒子群优化算法   总被引:1,自引:0,他引:1  
针对粒子群优化算法(PSO)固有的缺点,在研究标准的粒子群优化算法理论的基础上,提出了一种带交叉因子的改进的粒子群优化算法(MPSO),以解决算法的早熟收敛问题。该算法在搜索过程中引入了交叉因子,增加了粒子的多样性,克服了标准粒子群优化算法易陷入局部极优点的不足,并且算法有较快的收敛速度。该算法有较强的收敛性,还可以引入变异算子。将改进后的算法运用常见的几个测试函数进行了寻优仿真,仿真结果验证了带交叉因子的粒子群算法的可行性和有效性。  相似文献   

6.
基于差分进化算法在收敛快速性及粒子群算法在种群多样性保持上的优势,提出一种新的混合启发式优化算法,其基本思路是将粒子群种群作为辅助变异算子,与差分进化算法种群进行交叉操作,产生的新子代继承了父代和母代的优势特性,从而避免了单一算法的早熟收敛和收敛速度过慢的问题。通过与已有的改进算法仿真对比,该算法能够有效的跳出局部极值防止算法早熟且收敛速度很快。最后,借鉴已有文献方法对混合算法在B2C路径优化问题中的工程应用进行了实验研究。  相似文献   

7.
针对粒子群优化算法容易陷于局部最优的情况,将蚁群算法的信息素机制引入到粒子群算法中,保证了粒子间的多样性,从而有效克服了粒子群算法容易发生早熟停滞的缺陷。最后通过仿真实验证明了算法应用于软件测试的可行性和高效性。  相似文献   

8.
粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题的一类新兴的随机优化算法.介绍了PSO算法的基本原理和一些改进措施及PSO算法的应用,并对其将来的发展进行了展望.  相似文献   

9.
一种改进的多目标粒子群优化算法   总被引:1,自引:0,他引:1  
针对多目标粒子群优化算法在迭代过程中收敛速度和多样性方面的不足,提出一种改进的多目标粒子群优化算法(IMOPSO).采用基于栅格和拥挤距离的协同外部档案维护策略,通过更准确地选择收敛性和多样性性能更好的非劣粒子作为全局最优值,加快整个种群的收敛速度;采用分段Logistic混沌映射、外部档案检测机制及修改的粒子速度更新公式,分别在初始化阶段和迭代过程中增强种群的多样性;最后,通过对标准测试函数仿真测试证明了改进后的算法能够快速收敛至Pareto最优前沿并保持较好的多样性.  相似文献   

10.
一种新的集群优化方法--粒子群优化算法   总被引:9,自引:0,他引:9  
系统地介绍了粒子群优化算法、各种改进算法以及算法的应用情况。对粒子群优化算法的研究和应用进行了总结和展望,指出了其在机械系统优化设计中的应用前景。  相似文献   

11.
求解CVaR投资组合优化问题之改进PSO算法   总被引:1,自引:0,他引:1  
研究了基于CVaR约束的的最优投资决策问题,为避免维数障碍,针对Fredrik提出的CVaR投资组合优化线性规划模型还原为非线性规划。通过引入缩进因子,改进PSO算法,使粒子在迭代过程中保持在可行域内。最后,通过算例证明了该文方法的有效性,计算结果表明,投资组合优化后的损失期望收益率、标准差、受险价值、条件受险价值等重要风险衡量指标都有了较大改进。  相似文献   

12.
电力系统无功优化是提高电网高效运行和节能的关键环节。建立了综合考虑有功网损最小、电压偏差最小及静态电压裕度最大的三目标电力系统无功优化模型。提出了遗传粒子群(GAPSO)混合算法,并将算法运用于IEEE14与IEEE30节点电力系统无功优化中。该算法先通过选择操作,选出优秀的样本,在利用交叉操作增加种群的多样性。然后进行变异操作提高种群的局部搜索能力。通过数据计算和比较GAPSO算法在收敛速度、精度和全局搜索能力上均优于常规GA算法和PSO算法。结果验证了模型和算法的有效性和实用性。  相似文献   

13.
给出了一种具有随机变异特性的改进型粒子群协同优化算法,该算法克服了传统粒子群算法易陷入局部最优解且后续迭代过程速度慢的缺点.在迭代过程中,粒子的变异概率取决于粒子的适应度值以及当前所有粒子的聚集度.通过变异,粒子可有效地探索新的空间领域,从而可以有效地避免陷入局部最优解.Benchmark函数实验结果表明,优化后的粒子群算法比传统粒子群算法具有较快的收敛速度和较高的全局收敛能力.  相似文献   

14.
给出了一种具有随机变异特性的改进型粒子群协同优化算法,该算法克服了传统粒子群算法易陷入局部最优解且后续迭代过程速度慢的缺点.在迭代过程中,粒子的变异概率取决于粒子的适应度值以及当前所有粒子的聚集度.通过变异,粒子可有效地探索新的空间领域,从而可以有效地避免陷入局部最优解.Benchma呔函数实验结果表明,优化后的粒子群算法比传统粒子群算法具有较快的收敛速度和较高的全局收敛能力.  相似文献   

15.
改进遗传算法与粒子群优化算法及其对比分析   总被引:18,自引:0,他引:18  
进化算法作为一类新的优化搜索方法,广泛应用于各种优化问题.现对简单遗传算法进行了改进,采用实值编码,并与模拟退火算法及基于适值排序和随机选择的方法相结合,形成了改进遗传算法.同时还介绍了一种新的进化算法一粒子群优化算法.将这两种优化算法应用于函数优化,并对优化结果进行了对比分析.比较结果表明,改进遗传算法和粒子群优化算法都可以在函数优化方面表现出较好的健壮性,但在找寻最优解的效率上,粒子群优化算法较好.  相似文献   

16.
微粒群算法是继蚁群算法之后提出的又一种新型的进化计算技术。具有典型的群体智能的特性.介绍了微粒群算法的基本原理及其改进算法。从群体组织与进化以及混合微粒群算法等方面对国内外微粒群算法的研究进展进行综述.  相似文献   

17.
文章介绍一种新的基于特征结构的DOA估计算法,并对算法中非线性多维搜索问题限制算法应用这个缺点提出了一种基于约束的单纯形-粒子群混合优化DEUCE测向算法,改进算法把罚函数方法、粒子群算法、单纯形算法有机结合并应用到DEUCE算法中去;仿真结果表明改进算法在保持低收敛门限和高估计精度的优点下,具有更快的运算速度。  相似文献   

18.
粒子群优化算法及其与遗传算法的比较   总被引:18,自引:1,他引:18  
粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题。该文讨论粒子群优化算法的基本原理和实现步骤,分析了该算法中各参数的设置。通过一个测试函数,对粒子群优化算法与遗传算法进行了比较,结果表明粒子群优化算法在找寻最优解效率上好于遗传算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号