首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sam68 is a member of a growing family of RNA-binding proteins that contains an extended K homology (KH) domain embedded in a larger domain called the GSG (GRP33, Sam68, GLD1) domain. To identify GSG domain family members, we searched data bases for expressed sequence tags encoding related portions of the Sam68 KH domain. Here we report the identification of two novel Drosophila KH domain proteins, which we termed KEP1 (KH encompassing protein) and SAM. SAM bears sequence identity with mammalian Sam68 and may be the Drosophila Sam68 homolog. We demonstrate that SAM, KEP1, and the recently identified Drosophila Who/How are RNA-binding proteins that are able to self-associate into homomultimers. The GSG domain of KEP1 and SAM was necessary to mediate the RNA binding and self-association. To elucidate the cellular roles of these proteins, SAM, KEP1, and Who/How were expressed in mammalian and Drosophila S2 cells. KEP1 and Who/How were nuclear and SAM was cytoplasmic. The expression of KEP1 and SAM, but not Who/How, activated apoptotic pathways in Drosophila S2 cells. The identification of KEP1 and SAM implies that a large GSG domain protein family exists and helps redefine the boundaries of the GSG domain. Taken together, our data suggest that KEP1 and SAM may play a role in the activation or regulation of apoptosis and further implicate the GSG domain in RNA binding and oligomerization.  相似文献   

2.
Quiescent mouse embryonic C3H/10T1/2 cells are more resistant to different proapoptotic stimuli than are these cells in the exponential phase of growth. However, the exponentially growing 10T1/2 cells are resistant to inhibitors of RNA or protein synthesis, whereas quiescent cells die upon these treatments. Conditioned medium from quiescent 10T1/2 cells possesses anti-apoptotic activity, suggesting the presence of protein(s) that function as an inhibitor of the apoptotic program. Using differential display technique, we identified and cloned a cDNA designated sarp1 (secreted apoptosis-related protein) that is expressed in quiescent but not in exponentially growing 10T1/2 cells. Hybridization studies with sarp1 revealed two additional family members. Cloning and sequencing of sarp2 and sarp3 revealed 38% and 40% sequence identity to sarp1, respectively. Human breast adenocarcinoma MCF7 cells stably transfected with sarp1 or infected with SARP1-expressing adenovirus became more resistant, whereas cells transfected with sarp2 displayed increased sensitivity to different proapoptotic stimuli. Expression of sarp family members is tissue specific. sarp mRNAs encode secreted proteins that possess a cysteine-rich domain (CRD) homologous to the CRD of frizzled proteins but lack putative membrane-spanning segments. Expression of SARPs modifies the intracellular levels of beta-catenin, suggesting that SARPs interfere with the Wnt-frizzled proteins signaling pathway.  相似文献   

3.
MLN64 is a protein that is highly expressed in certain breast carcinomas. The C terminus of MLN64 shares significant homology with the steroidogenic acute regulatory protein (StAR), which plays a key role in steroid hormone biosynthesis by enhancing the intramitochondrial translocation of cholesterol to the cholesterol side-chain cleavage enzyme. We tested the ability of MLN64 to stimulate steroidogenesis by using COS-1 cells cotransfected with plasmids expressing the human cholesterol side-chain cleavage enzyme system and wild-type and mutant MLN64 proteins. Wild-type MLN64 increased pregnenolone secretion in this system 2-fold. The steroidogenic activity of MLN64 was found to reside in the C terminus of the protein, because constructs from which the C-terminal StAR homology domain was deleted had no steroidogenic activity. In contrast, removal of N-terminal sequences increased MLN64's steroidogenesis-enhancing activity. MLN64 mRNA was found in many human tissues, including the placenta and brain, which synthesize steroid hormones but do not express StAR. Western blot analysis revealed the presence of lower molecular weight immunoreactive MLN64 species that contain the C-terminal sequences in human tissues. Homologs of both MLN64 and StAR were identified in Caenorhabditis elegans, indicating that the two proteins are ancient. Mutations that inactivate StAR were correlated with amino acid residues that are identical or similar among StAR and MLN64, indicating that conserved motifs are important for steroidogenic activity. We conclude that MLN64 stimulates steroidogenesis by virtue of its homology to StAR.  相似文献   

4.
5.
Enteropathogenic Escherichia coli (EPEC) secretes at least five proteins. Two of these proteins, EspA and EspB (previously called EaeB), activate signal transduction pathways in host epithelial cells. While the role of the other three proteins (39, 40, and 110 kDa) remains undetermined, secretion of all five proteins is under the control of perA, a known positive regulator of several EPEC virulence factors. On the basis of amino-terminal protein sequence data, we cloned and sequenced the gene which encodes the 110-kDa secreted protein and examined its possible role in EPEC signaling and interaction with epithelial cells. In accordance with the terminology used for espA and espB, we called this gene espC, for EPEC-secreted protein C. We found significant homology between the predicted EspC protein sequence and a family of immunoglobulin A (IgA) protease-like proteins which are widespread among pathogenic bacteria. Members of this protein family are found in avian pathogenic Escherichia coli (Tsh), Haemophilus influenzae (Hap), and Shigella flexneri (SepA). Although these proteins and EspC do not encode IgA protease activity, they have considerable homology with IgA protease from Neisseria gonorrhoeae and H. influenzae and appear to use a export system for secretion. We found that genes homologous to espC also exist in other pathogenic bacteria which cause attaching and effacing lesions, including Hafnia alvei biotype 19982, Citrobacter freundii biotype 4280, and rabbit diarrheagenic E. coli (RDEC-1). Although these strains secrete various proteins similar in molecular size to the proteins secreted by EPEC, we did not detect secretion of a 110-kDa protein by these strains. To examine the possible role of EspC in EPEC interactions with epithelial cells, we constructed a deletion mutant in espC by allelic exchange and characterized the mutant by standard tissue culture assays. We found that EspC is not necessary for mediating EPEC-induced signal transduction in HeLa epithelial cells and does not play a role in adherence or invasion of tissue culture cells.  相似文献   

6.
Structures of secreted forms of the human type I and II class A macrophage scavenger receptors were studied using biochemical and biophysical methods. Proteolytic analysis was used to determine the intramolecular disulfide bonds in the type I-specific scavenger receptor cysteine-rich (SRCR) domain: Cys2-Cys7, Cys3-Cys8, and Cys5-Cys6. This pattern is likely to be shared by the highly homologous domains in the many other members of the SRCR domain superfamily. Electron microscopy using rotary shadowing and negative staining showed that the type I and II receptors are extended molecules whose contour lengths are approximately 440 A. They comprised two adjacent fibrous segments, an alpha-helical coiled-coil ( approximately 230 A, including a contribution from the N-terminal spacer domain) and a collagenous triple helix ( approximately 210 A). The type I molecules also contained a C-terminal globular structure ( approximately 58 x 76 A) composed of three SRCR domains. The fibrous domains were joined by an extremely flexible hinge. The angle between these domains varied from 0 to 180 degrees and depended on the conditions of sample preparation. Unexpectedly, at physiologic pH, the prevalent angle seen using rotary shadowing was 0 degrees , resulting in a structure that is significantly more compact than previously suggested. The apparent juxtaposition of the fibrous domains at neutral pH provides a framework for future structure-function studies of these unusual multiligand receptors.  相似文献   

7.
Huntingtin interacts with a family of WW domain proteins   总被引:2,自引:0,他引:2  
The hallmark neuropathology of Huntington's disease (HD) is due to elongation of a polyglutamine segment in huntingtin, a novel approximately 350 kDa protein of unknown function. We used a yeast two-hybrid interactor screen to identify proteins whose association with huntingtin might be altered in the pathogenic process. Surprisingly, no interactors were found with internal and C-terminal segments of huntingtin. In contrast, huntingtin's N-terminus detected 13 distinct proteins, seven novel and six reported previously. Among these, we identified a major interactor class, comprising three distinct WW domain proteins, HYPA, HYPB and HYPC, that bind normal and mutant huntingtin in extracts of HD lymphoblastoid cells. This interaction is mediated by huntingtin's proline-rich region and is enhanced by lengthening the adjacent glutamine tract. Although HYPB and HYPC are novel, HYPA is human FBP-11, a protein implicated in spliceosome function. The emergence of this class of proteins as huntingtin partners argues that a WW domain-mediated process, such as non-receptor signaling, protein degradation or pre-mRNA splicing, may participate in HD pathogenesis.  相似文献   

8.
9.
We have modeled the ligand-binding domain (LBD) of the human estrogen receptor protein (hER) by homology to the known crystal structure of the LBD of the alpha isoform of human retinoate-X receptor (hRX). Alignment of hER with members of the nuclear receptor superfamily defined probable secondary structures which we used to constrain backbone torsion angles and hydrogen bonds. From published studies we identified key interactions between hER and estradiol to use to dock the hormone in its ligand-binding pocket. Since the hRX crystal structure corresponds to the unliganded form of the LBD, we adopted the "mousetrap" mechanism proposed by Renaud et al to predict the structure of the E2-bound hER. Refinement by molecular dynamics and energy minimization gave a model which matches well the known facts about the estradiol phamacophore. It also provides a possible explanation for how hER discriminates between estradiol and testosterone.  相似文献   

10.
The approximately 25 kDa carboxy-terminal domain of Drosophila Hedgehog protein (Hh-C) possesses an autoprocessing activity that results in an intramolecular cleavage of full-length Hedgehog protein and covalent attachment of a cholesterol moiety to the newly generated amino-terminal fragment. We have identified a 17 kDa fragment of Hh-C (Hh-C17) active in the initiation of autoprocessing and report here its crystal structure. The Hh-C17 structure comprises two homologous subdomains that appear to have arisen from tandem duplication of a primordial gene. Residues in the Hh-C17 active site have been identified, and their role in Hedgehog autoprocessing probed by site-directed mutagenesis. Aspects of sequence, structure, and reaction mechanism are conserved between Hh-C17 and the self-splicing regions of inteins, permitting reconstruction of a plausible evolutionary history of Hh-C and the inteins.  相似文献   

11.
12.
alpha-Neurexins (Ialpha, IIalpha, and IIIalpha) are receptor-like proteins expressed in hundreds of isoforms on the neuronal cell surface. The extracellular domains of alpha-neurexins are composed of six LNS repeats, named after homologous sequences in the Laminin A G domain, Neurexins, and Sex hormone-binding globulin, with three interspersed epidermal growth factor-like domains. Purification of neurexin Ialpha revealed that it is tightly complexed to a secreted glycoprotein called neurexophilin 1. Neurexophilin 1 is a member of a family of at least four genes and resembles a neuropeptide, suggesting a function as an endogenous ligand for alpha-neurexins. We have now used recombinant proteins and knockout mice to investigate which isoforms and domains of different neurexins and neurexophilins interact with each other. We show that neurexophilins 1 and 3 but not 4 (neurexophilin 2 is not expressed in rodents) bind to a single individual LNS domain, the second overall LNS domain in all three alpha-neurexins. Although this domain is alternatively spliced, all splice variants bind, suggesting that alternative splicing does not regulate binding. Using homologous recombination to disrupt the neurexophilin 1 gene, we generated mutant mice that do not express detectable neurexophilin 1 mRNA. Mice lacking neurexophilin 1 are viable with no obvious morbidity or mortality. However, homozygous mutant mice exhibit male sterility, probably because homologous recombination resulted in the co-insertion into the neurexophilin gene of herpes simplex virus thymidine kinase, which is known to cause male sterility. In the neurexophilin 1 knockout mice, neurexin Ialpha is complexed with neurexophilin 3 but not neurexophilin 4, suggesting that neurexophilin 1 is redundant with neurexophilin 3 and that neurexophilins 1 and 3 but not 4 bind to neurexins. This hypothesis was confirmed using expression experiments. Our data reveal that the six LNS and three epidermal growth factor domains of neurexins are independently folding ligand-binding domains that may interact with distinct targets. The results support the notion that neurexophilins represent a family of extracellular signaling molecules that interact with multiple receptors including all three alpha-neurexins.  相似文献   

13.
Insect vitellogenin and yolk protein receptors (VgR/YPR) are newly discovered members of the low-density lipoprotein receptor (LDLR) family, which is characterized by a highly conserved arrangement of repetitive modular elements homologous to functionally unrelated proteins. The insect VgR/YPRs are unique in having two clusters of complement-type cysteine-rich (class A) repeats or modules, with five modules in the first cluster and seven in the second cluster, unlike classical LDLRs which have a single seven-module cluster, vertebrate VgRs and very low density lipoprotein receptors (VLDLR) which have a single eight-module cluster, and LDLR-related proteins (LRPs) and megalins which have four clusters of 2-7, 8, 10, and 11 modules. Alignment of clusters across subfamilies by conventional alignment programs is problematic because of the repetitive nature of the component modules which may have undergone rearrangements, duplications, and deletions during evolution. To circumvent this problem, we "fingerprinted" each class A module in the different clusters by identifying those amino acids that are both relatively conserved and relatively unique within the cluster. Intercluster reciprocal comparisons of fingerprints and aligned sequences allowed us to distinguish four cohorts of modules reflecting shared recent ancestry. All but two of the 57 modules examined could be assigned to one of these four cohorts designated A, B, C, and D. Alignment of clusters based on modular cohorts revealed that all clusters are derived from a single primordial cluster of at least seven modules with a consensus arrangement of CDCADBC. All extant clusters examined are consistent with this consensus, though none matches it perfectly. This analysis also revealed that the eight-module clusters in vertebrate VgRs, insect VgR/YPRs, and LRP/megalins are not directly homologous with one another. Assignment of modules to cohorts permitted us to properly align 32 class A clusters from all four LDLR subfamilies for phylogenetic analysis. The results revealed that smaller one-cluster and two-cluster members of the family did not originate from the breakup of a large two-cluster or four-cluster receptor. Similarly, the LRP/megalins did not arise from the duplication of a two-cluster insect VgR/YPR-like progenitor. Rather, it appears that the multicluster receptors were independently constructed from the same single-cluster ancestor.  相似文献   

14.
Guanine nucleotide exchange factors in the Dbl family activate Rho GTPases by accelerating dissociation of bound GDP, promoting acquisition of the GTP-bound state. Dbl proteins possess a approximately 200 residue catalytic Dbl-homology (DH) domain, that is arranged in tandem with a C-terminal pleckstrin homology (PH) domain in nearly all cases. Here we report the solution structure of the DH domain of human PAK-interacting exchange protein (betaPIX). The domain is composed of 11 alpha-helices that form a flattened, elongated bundle. The structure explains a large body of mutagenesis data, which, along with sequence comparisons, identify the GTPase interaction site as a surface formed by three conserved helices near the center of one face of the domain. Proximity of the site to the DH C-terminus suggests a means by which PH-ligand interactions may be coupled to DH-GTPase interactions to regulate signaling through the Dbl proteins in vivo.  相似文献   

15.
Diacylglycerol kinase (DGK) attenuates levels of second messenger diacylglycerol in cells and produces another (putative) messenger, phosphatidic acid. We have previously purified a 110-kDa DGK from rat brain (Kato, M., and Takenawa, T. (1990) J. Biol. Chem. 265, 794-800). Here we report the cDNA cloning from human brain and retina cDNA libraries. The cDNA encodes a novel DGK isotype, termed DGKtheta, of 941 amino acids with an apparent molecular mass of 110 kDa. DGKtheta contains a C-terminal putative catalytic domain, which is present in all eukaryotic DGKs. In contrast to other DGK isotypes, DGKtheta contains three cysteine-rich domains instead of two. The third cysteine-rich domain is most homologous to the second one in other DGK isotypes. This particular sequence homology extends C-terminally beyond the typical cysteine/histidine core structure and is DGK-specific. DGKtheta furthermore contains various domains for protein-protein interaction, such as a proline- and glycine-rich domain with a putative SH3 domain-binding site and a pleckstrin homology domain with an overlapping Ras-associating domain. DGKtheta is expressed in the brain and, to a lesser extent, in the small intestine, duodenum, and liver. In situ hybridization of DGKtheta mRNA in adult rat brain reveals high expression in the cerebellar cortex and hippocampus. DGKtheta activity in COS cell lysates is optimal toward diacylglycerols containing an unsaturated fatty acid at the sn-2 position.  相似文献   

16.
17.
A family of human receptors structurally related to Drosophila Toll   总被引:1,自引:0,他引:1  
Interhelical electrostatic interactions at specific heptad positions can regulate dimerization specificity of alpha-helical coiled-coils. We have analyzed 20 vertebrate myosin sequences from a variety of organisms and tissues in order to determine if interhelical ionic interactions correlate with the observed myosin dimerization specificity. We find that the sites for potential interhelical ion pairing are identical in virtually all sarcomeric myosins whether they form homo- or heterodimers. We also show that smooth muscle and non-muscle myosin rod sequences exhibit a different conserved pattern of potential interhelical ion pairing. These observations suggest that myosin rod residues involved in interhelical electrostatic interactions do not regulate dimerization specificity, but may contribute to the specific arrangements of myosin molecules that determine differences in the filament morphology of sarcomeric and non-sarcomeric muscles.  相似文献   

18.
We report the cloning and characterization of a novel membrane-bound, calcium-independent PLA2, named cPLA2-gamma. The sequence encodes a 541-amino acid protein containing a domain with significant homology to the catalytic domain of the 85-kDa cPLA2 (cPLA2-alpha). cPLA2-gamma does not contain the regulatory calcium-dependent lipid binding (CaLB) domain found in cPLA2-alpha. However, cPLA2-gamma does contain two consensus motifs for lipid modification, a prenylation motif (-CCLA) at the C terminus and a myristoylation site at the N terminus. We present evidence that the isoprenoid precursor [3H]mevalonolactone is incorporated into the prenylation motif of cPLA2-gamma. Interestingly, cPLA2-gamma demonstrates a preference for arachidonic acid at the sn-2 position of phosphatidylcholine as compared with palmitic acid. cPLA2-gamma encodes a 3-kilobase message, which is highly expressed in heart and skeletal muscle, suggesting a specific role in these tissues. Identification of cPLA2-gamma reveals a newly defined family of phospholipases A2 with homology to cPLA2-alpha.  相似文献   

19.
The Eph receptors, which bind a group of cell-membrane-anchored ligands known as ephrins, represent the largest subfamily of receptor tyrosine kinases (RTKs). They are predominantly expressed in the developing and adult nervous system and are important in contact-mediated axon guidance, axon fasciculation and cell migration. Eph receptors are unique among other RTKs in that they fall into two subclasses with distinct ligand specificities, and in that they can themselves function as ligands to activate bidirectional cell-cell signalling. We report here the crystal structure at 2.9 A resolution of the amino-terminal ligand-binding domain of the EphB2 receptor (also known as Nuk). The domain folds into a compact jellyroll beta-sandwich composed of 11 antiparallel beta-strands. Using structure-based mutagenesis, we have identified an extended loop that is important for ligand binding and class specificity. This loop, which is conserved within but not between Eph RTK subclasses, packs against the concave beta-sandwich surface near positions at which missense mutations cause signalling defects, localizing the ligand-binding region on the surface of the receptor.  相似文献   

20.
The widely expressed c-Crk protein, composed of one SH2 and two SH3 domains, lacks an apparent catalytic domain, suggesting that it functions through the formation of specific complexes with other proteins. Bacterially expressed c-Crk formed in vitro highly stable complexes via the first SH3 domain [SH3(N)]. Most prominent were a 185 kDa protein of unknown identity (p185), Sos- immunoreactive bands of 170 kDa (p170) and 145 to 155 kDa bands, corresponding to the recently cloned C3G protein. p170 also bound to Ash/Grb2 and Nck while p185 and C3G bound only to Crk. Additional Crk binding proteins were found in hematopoietic cells, particularly the myeloid-monocytic lineage. The protein binding properties of Crk were subsequently compared to CRKL, the product of a homologous but distinct gene, and found to be very similar. The binding of two guanine nucleotide exchange factors, Sos and C3G, to Crk and CRKL indicates that Ras or related proteins likely play a role in signaling through Crk family proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号