首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 20-Gb/s transmitter is implemented in 0.13-/spl mu/m CMOS technology. An on-die 10-GHz LC oscillator phase-locked loop (PLL) creates two sinusoidal 10-GHz complementary clock phases as well as eight 2.5-GHz interleaved feedback divider clock phases. After a 2/sup 20/-1 pseudorandom bit sequence generator (PRBS) creates eight 2.5-Gb/s data streams, the eight 2.5-GHz interleaved clocks 4:1 multiplex the eight 2.5-Gb/s data streams to two 10-Gb/s data streams. 10-GHz analog sample-and-hold circuits retime the two 10-Gb/s data streams to be in phase with the 10-GHz complementary clocks. Two-tap equalization of the 10-Gb/s data streams compensate for bandwidth rolloff of the 10-Gb/s data outputs at the 10-GHz analog latches. A final 20-Gb/s 2:1 output multiplexer, clocked by the complementary 10-GHz clock phases, creates 20-Gb/s data from the two retimed 10-Gb/s data streams. The LC-VCO is integrated with the output multiplexer and analog latches, resonating the load and eliminating the need for clock buffers, reducing power supply induced jitter and static phase mismatch. Power, active die area, and jitter (rms/pk-pk) are 165 mW, 650 /spl mu/m/spl times/350 /spl mu/m, and 2.37 ps/15 ps, respectively.  相似文献   

2.
An all-digital phase-locked loop (PLL) circuit in which resolution in the phase detector and digitally controlled oscillator (DCO) exactly matches the gate-delay time is presented. The pulse delay circuit is connected in a ring shape with 32 inverters (2/sup 5/ inverters). With the inverter gate-delay time as the time base, the pulse phase difference is detected simultaneously with the generation of the output clock. In this system, the phase detector and oscillator share a single ring-delay-line (RDL). This means the resolution is the same at all times, making a high-speed response possible. In a prototype integrated circuit (IC) using 0.65-/spl mu/m CMOS, the generation of a frequency multiplication clock was achieved with four reference clocks, and that of a phase-locked clock with seven reference clocks, for a high-speed response. The cell size was 1.08 /spl times/ 1.08 mm/sup 2/, and the output clock frequency had a wide range of 50 kHz/spl sim/60 MHz. The multiplication range of the clock frequency was also a very wide 4/spl sim/1022, and a high level of precision was achieved with a clock jitter standard deviation of 234 ps. This digital PLL can withstand a broad range of operating environments, from -30/spl deg/C/spl sim/140/spl deg/C, and is suitable for making a programmable clock generator on a chip.  相似文献   

3.
A single-path pulsewidth control loop with a built-in delay-locked loop   总被引:1,自引:0,他引:1  
A 1-1.27-GHz single-path pulse width control loop with a built-in delay-locked loop is presented. Based on the proposed circuit, not only can the 50% duty cycle of the output clock be assured but the phase alignment between the reference and output clocks can also be achieved. Moreover, the requirement of the reference clock with 50% duty cycle can be eliminated. By the single-to-complementary circuit and the switched charge pump, the duty cycle error can be reduced. Moreover, the duty cycle of the output clock can be adjusted for applications such as time-interleaved analog-to-digital converters, switched-capacitor circuits, and dc-dc converters. The proposed circuit has been fabricated in a 0.35-/spl mu/m CMOS process. The power consumption is 150 mW and the die area of the core circuit is 0.47/spl times/0.3 mm/sup 2/. The duty cycle of the output clock can be adjusted from 35% to 70% in steps of 5%.  相似文献   

4.
A monolithic 10-Gb/s clock/data recovery and 1:2 demultiplexer are implemented in 0.18-/spl mu/m CMOS. The quadrature LC delay line oscillator has a tuning range of 125 MHz and a 60-MHz/V sensitivity to power supply pulling. The circuit meets SONET OC-192 jitter specifications with a measured jitter of 8 ps p-p when performing error-free recovery of PRBS 2/sup 31/-1 data. Clock and data recovery (CDR) is achieved at 10 Gb/s, demonstrating the feasibility of a half-rate early/late PD (with tri-state) based CDR on 0.18-/spl mu/m CMOS. The 1.9/spl times/1.5 mm/sup 2/ IC (not including output buffers) consumes 285 mW from a 1.8-V supply.  相似文献   

5.
A 4-Gb/s clock and data recovery (CDR) circuit is realized in a 0.25-/spl mu/m standard CMOS technology. The CDR circuit exploits 1/8-rate clock technique to facilitate the design of a voltage-controlled oscillator (VCO) and to eliminate the need of 1:4 demultiplexer, thereby achieving low power consumption. The VCO incorporates the ring oscillator configuration with active inductor loads, generating four half-quadrature clocks. The VCO control line comprises both a programmable 6-bit digital coarse control and a folded differential fine control through a charge-pump and a low pass filter. Duty-cycle correction of clock signals is obtained by exploiting a high common-mode rejection ratio differential amplifier at the ring oscillator output. A 1/8-rate linear phase detector accomplishes the phase error detection with no systematic phase offset and inherently performs the 1:4 demultiplexing. Test chips demonstrate the jitter of the recovered clock to be 5.2 ps rms and 47 ps pk-pk for 2/sup 31/-1 pseudorandom bit sequence (PRBS) input data. The phase noise is measured to be -112 dBc/Hz at 1-MHz offset. The measured bit error rate is less than 10/sup -6/ for 2/sup 31/-1 PRBS. The chip excluding output buffers dissipates 70 mW from a single 2.5-V supply.  相似文献   

6.
A CMOS low-power mixed-signal clock and data recovery circuit is presented in this paper. It is designed for OIF CEI-6G+ LR backplane transceiver, and consists of a phase detector, loop filter, phase control logic, and phase interpolator. A unique subsampled architecture makes it possible for a low-power mixed-signal clock recovery loop running at a rate of 6 Gb/s. The proposed architecture has data pattern independent loop bandwidth. Fabricated in a 0.13-/spl mu/m CMOS technology in an area of 280/spl times/100 /spl mu/m/sup 2/, the clock and data recovery loop exhibits a frequency tracking range up to 2000 ppm. The bit error rate is less than 10/sup -12/ with a pseudorandom bit sequence of length 2/sup 31/-1. The power dissipation is 24 mW for clock and data recovery circuits from a single 1.2-V supply.  相似文献   

7.
A 155.52 Mbps-3.125 Gbps continuous-rate clock and data recovery (CDR) circuit using the full-rate bang-bang phase detector is presented. A frequency detector is proposed to eliminate the harmonic locking problem even with a wide range of data rates and its theoretical analysis is also discussed. A quadrature divider is also presented to generate the clocks with accurate quadrature phases. This CDR circuit has been realized in a 0.18-/spl mu/m CMOS process and its die area is 1.1/spl times/0.8 mm/sup 2/. It consumes 95 mW at the highest bit rate of 3.125 Gbps. It can recover the NRZ data of a 2/sup 31/-1 PRBS with the bit rate ranging from 155.52 Mbps to 3.125Gbps for the incremental frequency acquisition and the NRZ data of a 2/sup 7/-1 PRBS for the decremental frequency acquisition. All the measured bit error rates are less than 10/sup -12/.  相似文献   

8.
A 0.622-8-Gb/s clock and data recovery (CDR) circuit using injection locking for jitter suppression and phase interpolation in high-bandwidth system-on-chip solutions is described. A slave injection locked oscillator (SILO) is locked to a tracking aperture-multiplying DLL (TA-MDLL) via a coarse phase selection multiplexer (MUX). For the fine timing vernier, an interpolator DAC controls the injection strength of the MUX output into the SILO. This 1.2-V 0.13-/spl mu/m CMOS CDR consumes 33 mW at 8Gb/s. Die area including voltage regulator is 0.08 mm/sup 2/. Recovered clock jitter is 49 ps pk-pk at a 200-ppm bit-rate offset.  相似文献   

9.
A 10-Gb/s phase-locked clock and data recovery circuit incorporates a multiphase LC oscillator and a half-rate phase/frequency detector with automatic data retiming. Fabricated in 0.18-/spl mu/m CMOS technology in an area of 1.75/spl times/1.55 mm/sup 2/, the circuit exhibits a capture range of 1.43 GHz, an rms jitter of 0.8 ps, a peak-to-peak jitter of 9.9 ps, and a bit error rate of 10/sup -9/ with a pseudorandom bit sequence of 2/sup 23/-1. The power dissipation excluding the output buffers is 91 mW from a 1.8-V supply.  相似文献   

10.
Gu  Z. Thiede  A. 《Electronics letters》2004,40(25):1572-1574
The design of a fully monolithic integrated 10 GHz full-rate clock and data recovery (CDR) circuit in 0.18 /spl mu/m digital CMOS technology, which employs an injection phase-locked loop (PLL) technique is presented. The CDR operating without the external reference exhibits a capture range of 200 MHz while consuming 205 mA current from 1.8 V supply including the output buffer. The recovered clock signal with 250 mV/sub pp/ pseudorandom bit Sequence input data of length 2/sup 31/-1 exhibits 7.9 ps of peak-to-peak (p-p) and 1.1 ps of root-mean-square (RMS) jitter. The measured clock phase noise at 1 MHz offset is approximately -109 dBc/Hz.  相似文献   

11.
A packaged D-type flip-flop (DFF) decision circuit for optical OC-768 systems and testing equipment is reported. The circuit uses 1 /spl mu/m InP SHBT technology featuring f/sub T//f/sub max/=150 GHz and has been operated up to 45 Gb/s with a clock phase margin about 180/spl deg/. Measured output eye diagrams from packaged devices exhibit 9/8 ps rise/fall with only 3ps peak-peak jitter. A single-ended AC-coupled clock input makes the application of this circuit very convenient. The IC dissipates 440 mW from a -4V supply voltage.  相似文献   

12.
A wide-range delay-locked loop with a fixed latency of one clock cycle   总被引:1,自引:0,他引:1  
A delay-locked loop (DLL) with wide-range operation and fixed latency of one clock cycle is proposed. This DLL uses a phase selection circuit and a start-controlled circuit to enlarge the operating frequency range and eliminate harmonic locking problems. Theoretically, the operating frequency range of the DLL can be from 1/(N/spl times/T/sub Dmax/) to 1/(3T/sub Dmin/), where T/sub Dmin/ and T/sub Dmax/ are the minimum and maximum delay of a delay cell, respectively, and N is the number of delay cells used in the delay line. Fabricated in a 0.35 /spl mu/m single-poly triple-metal CMOS process, the measurement results show that the proposed DLL can operate from 6 to 130 MHz, and the total delay time between input and output of this DLL is just one clock cycle. From the entire operating frequency range, the maximum rms jitter does not exceed 25 ps. The DLL occupies an active area of 880 /spl mu/m/spl times/515 /spl mu/m and consumes a maximum power of 132 mW at 130 MHz.  相似文献   

13.
This paper presents the first fully integrated SONET OC-192 transmitter and receiver fabricated in a standard 0.18-/spl mu/m CMOS process. The transmitter consists of an input data register, 16-b-wide first-in-first-out (FIFO) circuit, clock multiplier unit (CMU), and 16:1 multiplexer to give a 10-Gb/s serial output. The receiver integrates an input amplifier for 10-Gb/s data, clock and data recovery circuit (CDR), 1:16 demultiplexer, and drivers for low-voltage differential signal (LVDS) outputs. An on-chip LC-type voltage-controlled oscillator (VCO) is employed by both the transmitter and receiver. The chipset operates at multiple data rates (9.95-10.71 Gb/s) with functionality compatible with the multisource agreement (MSA) for 10-Gb transponders. Both chips demonstrate SONET-compliant jitter characteristics. The transmitter 10.66-GHz output clock jitter is 0.065 UI/sub pp/ (unit interval, peak-to-peak) over a 50-kHz-80-MHz bandwidth. The receiver jitter tolerance is more than 0.4 UI/sub pp/ at high frequencies (4-80 MHz). A high level of integration and low-power consumption is achieved by using a standard CMOS process. The transmitter and receiver dissipate a total power of 1.32 W at 1.8 V and are packaged in a plastic ball grid array with a footprint of 11/spl times/11 mm/sup 2/.  相似文献   

14.
Broad-band phase-locked loops (PLLs) are proposed for burst-mode clock and data recovery in optical multiaccess networks. Design parameters for a charge-pump PLL-based clock and data recovery (CDR) with fast phase acquisition are derived using a time-domain model that does not assume narrow loop bandwidth or small phase errors. Implementation in a half-rate CDR circuit confirms a clock phase acquisition time of 40 ns, or 100 bits at 2.488-Gb/s rate, and data recovery at 1.244-Gb/s rate with a bit-error rate of 1/spl times/10/sup -10/ (2/sup 14/-1 pseudorandom binary sequence with Manchester-encoding). The CDR was fabricated in complementary metal-oxide-semiconductor 0.18-/spl mu/m technology in an area of 1/spl times/1 mm/sup 2/ and consumes 54 mW of power from a 1.8-V supply.  相似文献   

15.
A 3.125-Gb/s clock and data recovery (CDR) circuit using a half-rate digital quadricorrelator frequency detector and a shifted-averaging voltage-controlled oscillator is presented for 10-Gbase-LX4 Ethernet. It can achieve low-jitter operation and improve pull-in range without a reference clock. This CDR circuit has been fabricated in a standard 0.18-/spl mu/m CMOS technology. It occupies an active area of 0.6 /spl times/ 0.8 mm/sup 2/ and consumes 83 mW from a single 1.8-V supply. The measured bit-error rate is less than 10/sup -12/ for 2/sup 7/ - 1 PRBS 3.125-Gb/s data. It can meet the jitter tolerance specifications for the 10-Gbase-LX4 Ethernet application.  相似文献   

16.
A spread-spectrum clock generator with triangular modulation   总被引:1,自引:0,他引:1  
In this paper, a spread-spectrum clock generator (SSCG) with triangular modulation is presented. Only a divider and a programmable charge pump are added into a conventional clock generator to accomplish the spread-spectrum function. The proposed circuit has been fabricated in a 0.35-/spl mu/m CMOS single-poly quadruple-metal process. The proposed SSCG can generate clocks of 66, 133, and 266 MHz with center spread ratios of 0.5%, 1%, 1.5%, 2%, and 2.5%. Experimental results confirm the theoretical analyses.  相似文献   

17.
An improved voltage multiplier technique has been developed for generating +40 V internally in p-channel MNOS integrated circuits to enable them to be operated from standard +5- and -12-V supply rails. With this technique, the multiplication efficiency and current driving capability are both independent of the number of multiplier stages. A mathematical model and simple equivalent circuit have been developed for the multiplier and the predicted performance agrees well with measured results. A multiplier has already been incorporated into a TTL compatible nonvolatile quad-latch, in which it occupies a chip area of 600 /spl mu/m/spl times/240 /spl mu/m. It is operated with a clock frequency of 1 MHz and can supply a maximum load current of about 10 /spl mu/A. The output impedance is 3.2 M/spl Omega/.  相似文献   

18.
A fully integrated clock and data recovery circuit (CDR) using a multiplying shifted-averaging delay locked loop and a rate-detection circuit is presented. It can achieve wide range and low jitter operation. A duty-cycle-insensitive phase detector is also proposed to mitigate the dependency on clock duty cycle variations. The experimental prototype has been fabricated in a 0.25-/spl mu/m 1P5M CMOS technology and occupies an active area of 2.89 mm/sup 2/. The measured CDR could operate from 125 Mb/s to 2.0 Gb/s with a bit error rate better than 10/sup -12/ from a 2.5-V supply. Over the entire operating frequency range, the maximum rms jitter of the recovered clock is less than 4 ps.  相似文献   

19.
CMOS digital duty cycle correction circuit for multi-phase clock   总被引:3,自引:0,他引:3  
Jang  Y.C. Bae  S.J. Park  H.J. 《Electronics letters》2003,39(19):1383-1384
A digital duty cycle correction circuit with a fixed-delay rising-edge output is proposed for use in applications with the multi-phase clock and the standby mode. Two integrators are used in the duty cycle detector to eliminate the effect of reference voltage variations. The output duty cycle is adjusted to 50/spl plusmn/0.25% throughout the input duty cycle range from 20% to 80% at the frequency of 1.25 GHz. 0.18 /spl mu/m CMOS technology is used in this work.  相似文献   

20.
A 4160-bit serial memory chip has been designed, fabricated, and tested using as the basic memory cell the conductively connected charge-coupled device (CCD) or C4D. The chip includes an inverting regenerator every 65 bits and a reading tap every 130 bits. Also on-chip is a recirculating amplifier which senses the charge packet as it reaches the end of the register and feeds it back to the input. This means that once data has been written onto the chip, it will be retained as long as the regenerator supply and the two clocks are on. The chip has two multiplexed halves to obtain a data rate of twice the clock frequency. The active area of the chip is 12 mm/SUP 2/ or 2900 /spl mu/m/SUP 2/ per bit. Operation was obtained for arbitrary data streams at clock rates of 1 kHz to 1.6 MHz (3.2 MHz data rate). Power dissipation varies linearly with frequency and is 16 /spl mu/W per bit at the highest frequency. Maximum read latency is 80 /spl mu/s at this frequency. This performance demonstrates the feasibility of the C4D as a component for a medium speed large-scale memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号