首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wear experiments were conducted on a block-on ring tester. The stationary block made from cast iron of 50 HRC hardness was ground. The rotated ground ring was made from 42CrMo4 steel of 32 HRC hardness. The rings were modified by a burnishing technique in order to obtain surfaces with oil pockets. Oil pockets of spherical and of drop shape were tested. The correlation and regression analysis of parameters of textured surface topography was carried out. Two sets of surfaces were analysed: after machining and after “zero-wear”. As the result of analysis, minimum number of parameters describing this surface kind was obtained. A simple truncation model of the ring surface change was used. Worn surface topographies, after a low wear, were also modeled in a different way. An idea of the proposed method of surface topography modeling is imposition of random surface of Gaussian ordinate distribution on the base surface (after burnishing). The modeled surfaces were correctly matched to the measured surfaces in 90% of all analysed cases. Basing on the simulation, the local wear values during a low wear process were calculated and compared with experimental ones.  相似文献   

2.
The experiments were carried out using a block-on-ring tester. The stationary blocks were modified by a burnishing technique in order to obtain surfaces with oil pockets of spherical shape. The area density of oil pockets varied in order to explore their effect on wear resistance and wear intensity. Specimen surfaces had dimples with depths 45-60 μm and diameters 1-1.2 mm. The area density of oil pockets Sp was in the range 4-20%. The block samples were made from bronze B101 (CuSn10P) of 138 HB hardness. The rotated rings were made from 42CrMo4 steel, hardness of 40 HRC obtained after heat treatment. The tested assembly was lubricated by mineral oil L-AN 46. The experiment was carried out under artificially increased dustiness conditions. The dust added to oil consists mainly of SiO2 (74%) and Al2O3 (15%) particles. During the test friction force and temperature of block sample were registered. The tendencies of block surface topography changes during wear were analysed. It was found that sliding pairs with textured specimens were not superior to a system with a turned block with regard to abrasive wear resistance.  相似文献   

3.
A purpose of this research is to study the influence of geometrical characteristics of the surface texture on the Stribeck curve in lubricating sliding.The tribosystem consists of the stationary block pressed at the required constant load 1800 N against the ring rotating at the defined speeds. Tests were conducted at increasing sliding speed of range 0.08–0.69 m/s. Every speed was maintained for 2 min. The test was carried out under conformal contact conditions. The sliding was unidirectional. The block was a part of a bearing sleeve hardened EN-GJS 400-15 cast iron with a hardness value of 50 HRC. The ring samples, 35 mm in diameter, were made from hardened 42CrMo4 steel of hardness 32 HRC. Some variants of specimen surfaces were created by burnishing technique. The area density of oil pockets S was in the range 7.5–20%. The dimples depth to length ratios were between 0.03 and 0.08. Ring surfaces with oil pockets of short drop, long drop and spherical shapes were tested.It was shown that with proper shape and dimensions as well as suitable area density of oil pockets the friction characteristic of the sliding pairs could be improved in comparison to non-textured surfaces.  相似文献   

4.
The results of experimental investigations on the effect of the oil pockets existence on seizure resistance of sliding elements are presented. Seizure tests were conducted with block-on-ring apparatus at increasing pressure. The stationary block (counter specimen) contacted the rotating steel ring (specimen). The tested assemblies were lubricated by oil L-AN 46, which was heated to 30 °C before each experiment. The sliding was unidirectional. The block was a part of a bearing sleeve-hardened EN-GJS 400-15 cast iron with a hardness value of 50 HRC. The ring samples, 35 mm in diameter, were made from hardened 42CrMo4 steel of hardness 32 HRC. The friction force and temperature near the contact zone were measured during the tests. Some variants of specimen surfaces were created by burnishing technique. They were characterised by the oil pocket density, the holes depth, length, and width. The oil pockets existence of area density of 10% on the ring surface improved seizure resistance of the sliding pair steel-cast iron for speed of 0.27 m/s. The pit shape and orientation are very important, too.  相似文献   

5.
The tribosystem consisted of a stationary block pressed at a required load P against a ring rotating at a defined speed. Sliding was unidirectional. Block samples, made from bronze CuSn10P with 138-HB hardness, were modified using a burnishing technique to obtain surfaces with circular oil pockets. Rings were made from 42CrMo4 steel, of hardness 40 HRC, which was obtained after heat treatment. Tests were conducted at a constant speed of 0.27 m/s. Before the test, an oil drop was added to lubricate sliding surfaces. A seizure resistance test was carried out at constant normal load of 2700 N. Tribotests were automatically stopped when the coefficient of friction reached a limit value 0.15. Selected textured samples clearly exhibited a lifetime longer than untextured reference specimens.  相似文献   

6.
The effects of vanadium and carbon on microstructures and abrasive wear resistance of high speed steel were studied. The results show that the microstructures are characterized by VC, M7C3 and Mo2C in the martensite and austenite matrix. Typical morphologies of vanadium carbides are found to be spherical, lumpy, strip, and short rod. On the other hand, the vanadium carbides have three kinds of distributions, i.e. grain boundary, chrysanthemum-like, and homogeneous distributions. The abrasive wear resistance of high speed steel depends on the hardness and microstructures. When the hardness is lower than HRC58, the abrasive wear resistance of the high speed steel mainly depends on its hardness. But when the hardness is higher than HRC58, it mainly depends on the amount, morphology and distribution of VC in the matrix. Many spherical or lumpy VC carbides are obtained when vanadium and carbon content is up to 8.15–10.20 and 2.70–3.15%. The excellent abrasive wear resistance would be obtained if such VC carbides disperse uniformly in the hardened matrix of high speed steel after quenched at 1050 °C and tempered at 550 °C.  相似文献   

7.
This paper reports an experimental study of the effect of surface texture on cylinder liner wear. This research is important because the conjunction between piston rings and cylinder liner is one of the major sources to frictional losses in internal combustion engines. Experiments were conducted on a reciprocating tester. Specimens were cut from cylinder liners honed or plateau honed made of grey cast iron of hardness 218 HB. The honing operation was performed in order to obtain very similar values of the Sq parameter of one-process and two-process surfaces. In addition, one-process specimens characterised by different Sq parameter values were tested. Counter-specimens were made from chromium-coated steel C45. It was found that wear of two-process surfaces was lower than that of one-process surfaces characterized by the same Sq parameter. Linear wear of specimens was proportional to initial Sq parameter value. The effect of additional oil pockets created by the burnishing technique on cylinder liner wear was negligible.  相似文献   

8.
Anticipated emission legislation and reduced fuel consumption are the main driving forces when developing new engines. Optimization of the active surfaces in the piston system is one possible way to meet the above demands. In this study the effects of surface topography and texture direction of the ring/liner contact on oil film thickness and friction were simulated and experimentally tested. “Low wear” results from the experimental wear tests with “glide honed” smooth liner surfaces supported the “low friction” simulation results. In addition a new wear volume sensitive surface roughness parameter, Rktot, based on the Abbot–Firestone bearing area curve was introduced.  相似文献   

9.
A review of literature about the effect of oil pockets on improvement of sliding elements tribological performance as well as about the changes of surface topography during “zero-wear” process is shown. The paper presents also the results of experimental investigations done in the Department of Manufacturing Processes and Production Organisation of Rzeszow University of Technology, connected with the creation of oil pockets on sliding surfaces. In order to simulate a deterministic surface a program for the visualisation of pits was written. The procedures for assessment of the oil pocket size of specific shape and oil pockets coverage are presented. The tendencies of changes of surface topography and oil pockets dimensions during “zero-wear” process are also described.  相似文献   

10.
The initial sliding wear of boundary lubricated piston rings used in a hydraulic motor is studied in terms of the changes in mass, form and surface roughness. The piston ring in a hydraulic motor makes an important contribution to high volumetric efficiency by properly sealing the cylinder bore and piston. The results show that the wear on the piston ring in this particular test rig takes place at the top of the asymmetric crowning at the outer surface contacting the cylinder bore. Initially, the roughness amplitude decreased rapidly, and had decreased by one-third after sliding 10 m. The dominant wear mechanism was mild wear. Abrasive wear also clearly influences the amount of wear.  相似文献   

11.
This paper, the first of a two-part series, presents the empirical data obtained from in situ examination on the generation of wear particles on carbon nitride coatings by a spherical diamond counter-face during repeated sliding contacts. In particular, the effect of coating thickness, varying from 1 to 500 nm, on the generation of wear particles was examined.Based on the in situ examination, the shape transition maps for generated wear particles were obtained for carbon nitride coatings of various thickness. The results show that the critical number of friction cycles, Nc, for the transition from “no observable wear particles” to “wear particle generation” generally increased with increasing coating thickness. It was noted that up to 20 friction cycles, the maximum Hertzian contact pressure, Pmax, for “no observable wear particles” regime can be increased from 1.39Y to 1.53Y if silicon was coated with carbon nitride coating thicker than 10 nm, where Y is defined as the yield strength of silicon.  相似文献   

12.
13.
Janusz Lubas 《Wear》2012,274(1-2):504-509
The aim of the present work is to determine the influence of TiB2 coating on the friction parameters in sliding pairs under lubricated friction conditions. The TiB2 coating deposited on modified surface layers of ring specimens made of AISI 5045 steel was matched under test conditions with counterparts made from SAE-783 and SAE-48 bearing alloys. Tested sliding pairs were lubricated with 5 W/40 Lotos synthetic engine oil. Tribological properties of the TiB2 coating were measured using a block-on-ring tribometer. The applied modification technology of the surface layer of steel allowed for obtaining construction material with pre-determined tribological characteristics required for the elements of sliding pairs in lubricated contact. The results showed differences in the wear of bearing alloys, as a result of the interaction between co-operating surface layers and of the physiochemical changes of their surfaces, induced by external forces. Friction resistance and temperature in the friction area in the pair with TiB2 coating and the SAE-783 bearing alloy are considerably higher than in the pair with the SAE-48 bearing alloy. The SAE-48 bearing alloy is subjected to more intensive wear processes in contact with the TiB2 coating than the SAE-783 bearing alloy.  相似文献   

14.
Surface roughness, roughness arrangement, film thickness, material hardness, and run-in process have significant effects on the lubricated rolling/sliding wear of mechanical components such as gears and bearings. In conventional analysis, a film thickness parameter is calculated by a geometric approach to study the wear resistance of a contact system without considering the effects of material hardness and run-in process. Although the conventional parameter is simple, it does not correlate with some experimental observations. In this work, a new roughness parameter is developed for the prediction of lubricated rolling/sliding wear. Surface roughness will be adjusted by its hardness and contact frequency. The calculation results are consistent with four groups of experimental data. It is proved that the conventional models can be derived as a special case of the new model when two contact surfaces have the same properties. The new model can be used in the optimal design and manufacturing of mechanical interfaces to reduce lubricated rolling/sliding wear.  相似文献   

15.
Silicon carbide (SiC) is a potential ceramic material for recording heads, yet its tribological performance against lubricated thin-film rigid disks is not fully known. Square pins with a 100 mm radius spherical surface were made from hot pressed SiC, chemical vapor deposited (CVD) SiC, and Al2O3TiC, and tested with lubricated thin-film disks. The pin-on-disk tests showed that the region of contact on the spherical surface of the SiC and CVD-SiC pins wears away to form a circular wear plateau with smears in and around the plateau. The wear plateau is formed rapidly in the first 1000 drag revolutions and then very gradually grows in size with further revolutions. Analysis of the smears showed that a large fraction of the smears contained SiO2 which had been oxidized from SiC due to high temperatures generated at the pin surface in contact with the disk. In contrast, tests with Al2O3. TiC pins did not show any formation of a wear plateau on the pins.  相似文献   

16.
粉末热锻浮动油封密封环的耐磨性研究   总被引:4,自引:1,他引:4  
研究了粉末热锻浮动油封密封环的材质、表面处理、显微组织对其耐磨性的影响。试验结果表明:粉末热锻Fe-Cu-Mo-C材质浮动油封密封环的表面硬度大于HRC63,工作表面存在弥散微孔,具有贮油作用,有利于油膜形成,从而提高其耐磨性。  相似文献   

17.
ABSTRACT

60NiTi is a hard (~60 HRC) and highly corrosion-resistant intermetallic with a relatively low elastic modulus (~100 GPa). In addition, this alloy exhibits a high compressive strength (~2,500 MPa) and a high elastic compressive strain of over 5%. These attributes make this alloy an attractive candidate to be employed in structural and mechanical component applications. However, sliding wear behavior of this intermetallic has not yet been studied in a systematic way. In this study, lubricated and unlubricated reciprocating sliding wear behavior of 60NiTi is compared to 440 C steel as a conventional bearing and wear-resistant alloy. Results of experiments carried out under different loads show that 60NiTi, despite having a higher hardness, exhibits a significantly inferior wear behavior under dry conditions in comparison to 440 C steel. These unexpected results indicate that 60NiTi does not follow conventional wear theories where the wear of materials has an inverse relationship to their hardness. On the other hand, under lubricated conditions with castor oil and a synthetic gear oil, 60NiTi exhibits low specific wear rates. These results exhibit the importance of proper lubrication in sliding mode applications where 60NiTi is exploited as a wear-resistant alloy.  相似文献   

18.
《Wear》2007,262(1-2):11-23
Five thermally sprayed coatings, considered for application in earth moving vehicle undercarriage components, undergoing consecutively lubricated and dry sliding wear, were prepared and investigated. Four different wear tests were employed to reveal the factors controlling the wear response under different contact conditions. An approach considering the local and overall strength of the coating in connection with the knowledge of contact stresses helped to understand the major wear modes under specific contact conditions for the materials tested. The testing illustrated that in situations with lower contact stresses the contact response of the coating may not be directly related to the intersplat binding strength and hardness, but rather to the local splat properties. It has been shown that a porous structure although limiting the wear resistance of nickel aluminum coating in dry under high contact stress may be beneficial in quasi-lubricated sliding. High local splat hardness measured for the molybdenum carbide coatings appeared to be crucial for its enhanced wear resistance. The testing configuration ‘rotating ring on flat’ newly employed in this study has been proven to be a highly reproducible and efficient way of wear testing for thermal spray coatings.  相似文献   

19.
推导了大型水泵油润滑导轴承梳齿迷宫密封泄漏量计算公式。通过实例计算了梳齿迷宫密封的泄漏量及各密封段的压降,分析了各段对密封效果的影响。比较了梳齿迷宫密封与端面密封的密封效果,分析了油润滑导轴承浸水的可能原因,指出了梳齿迷宫密封的适用性。结果表明:在水泵导轴承梳齿迷宫密封中O形密封圈的磨损量对泄漏量影响很大,O形密封圈必须选用耐磨性能好的材料,并控制泵轴摆度以减小O形密封圈的磨损量;在正常运行情况下梳齿迷宫密封的泄漏量远大于端面密封,因此要保证足够的排漏水能力,以免因排漏水不畅造成导轴承浸水。  相似文献   

20.
This paper studies the impact of a special carbide tool design on the process viability of the face milling of hardened AISI D3 steel (with a hardness of 60 HRC), in terms of surface quality and tool life. Due to the advances in the manufacturing of PVD AlCrN tungsten carbide coated tools, it is possible to use them in the manufacturing of mould and die components. Experimental results show that surface roughness (Ra) values from 0.1 to 0.3 μm can be obtained in the workpiece with an acceptable level of tool life. These outcomes suggest that these tools are suitable for the finishing of hardened steel parts and can compete with other finishing processes. The tool performance is explained after a tool wear characterization, in which two wear zones were distinguished: the region along the cutting edge where the cutting angle (κ) is maximum (κmax) for a given depth of cut, and the zone where the cutting angle is minimum (κ?=?0) that generates the desired surface. An additional machining test run was made to plot the topography of the surface and to measure dimensional variations. Finally, for the parameters optimal selection, frequency histograms of Ra distribution were obtained establishing the relationship between key milling process parameters (Vc and fz), surface roughness and tool wear morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号