首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper focuses on the linear-quadratic control problem for a time-varying partial differential equation model of a catalytic fixed-bed reactor. The classical Riccati equation approach, for time-varying infinite-dimensional systems, is extended to cover the two-time scale property of the fixed-bed reactor. Dynamical properties of the linearized model are analyzed using the concept of evolution systems. An optimal LQ-feedback is computed via the solution of a matrix Riccati partial differential equation. Numerical simulations are performed to evaluate the closed loop performance of the designed controller on the fixed-bed reactor. The performance of the proposed controller is compared to performance of an infinite dimensional controller formulated by ignoring the catalyst deactivation. Simulation results show that the performance of the proposed controller is better compared to the controller ignoring the catalyst deactivation when the deactivation time is close to the resident time of the reactor.  相似文献   

2.
3.
4.
The linear quadratic (LQ) optimal control problem is studied for a partial differential equation model of a time-varying catalytic reactor. First, the dynamical properties of the linearised model are studied. Next, an LQ-control feedback is computed by using the corresponding operator Riccati differential equation, whose solution can be obtained via a related matrix Riccati partial differential equation. Finally, the designed controller is applied to the non-linear reactor system and tested numerically.  相似文献   

5.
This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic–hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.  相似文献   

6.
This paper presents a Galerkin/neural-network- based guaranteed cost control (GCC) design for a class of parabolic partial differential equation (PDE) systems with unknown nonlinearities. A parabolic PDE system typically involves a spatial differential operator with eigenspectrum that can be partitioned into a finite-dimensional slow one and an infinite-dimensional stable fast complement. Motivated by this, in the proposed control scheme, Galerkin method is initially applied to the PDE system to derive an ordinary differential equation (ODE) system with unknown nonlinearities, which accurately describes the dynamics of the dominant (slow) modes of the PDE system. The resulting nonlinear ODE system is subsequently parameterized by a multilayer neural network (MNN) with one-hidden layer and zero bias terms. Then, based on the neural model and a Lure-type Lyapunov function, a linear modal feedback controller is developed to stabilize the closed-loop PDE system and provide an upper bound for the quadratic cost function associated with the finite-dimensional slow system for all admissible approximation errors of the network. The outcome of the GCC problem is formulated as a linear matrix inequality (LMI) problem. Moreover, by using the existing LMI optimization technique, a suboptimal guaranteed cost controller in the sense of minimizing the cost bound is obtained. Finally, the proposed design method is applied to the control of the temperature profile of a catalytic rod.  相似文献   

7.
The optimal boundary control problem is studied for coupled parabolic PDE–ODE systems. The linear quadratic method is used and exploits an infinite-dimensional state-space representation of the coupled PDE–ODE system. Linearization of the nonlinear system is established around a steady-state profile. Using appropriate state transformations, the linearized system has been formulated as a well-posed infinite-dimensional system with bounded input and output operators. It has been shown that the resulting system is a Riesz spectral system. The linear quadratic control problem has been solved using the corresponding Riccati equation and the solution of the corresponding eigenvalue problem. The results were applied to the case study of a catalytic cracking reactor with catalyst deactivation. Numerical simulations are performed to illustrate the performance of the proposed controller.  相似文献   

8.
Sliding mode based feedback control has long been recognized as a powerful, yet easy-to-implement, control method to counteract non-vanishing external disturbances and unmodelled dynamics. Recently, research attention has focused on the development of sliding mode feedback control methods for various classes of infinite-dimensional systems. However, the existing methods are based on the assumption that distributed sensing and actuation is available, which significantly restricts their applicability to distributed process control applications. In this work, a sliding mode output feedback control method is developed for a class of linear infinite-dimensional systems with finite-dimensional unstable part using finite-dimensional sensing and actuation. Modal decomposition is initially used to decompose the original infinite-dimensional system into an interconnection of a finite-dimensional (possibly unstable) system and an infinite-dimensional stable system. Then, a sliding mode-based stabilizing state feedback controller is constructed on the basis of the finite-dimensional system. Subsequently, an infinite-dimensional Luenberger state observer, which utilizes a finite number of measurements, is constructed to provide estimates of the state of the infinite-dimensional system. Finally, an output feedback controller design is completed by coupling the infinite-dimensional Luenberger state observer and the sliding mode-based state feedback controller. Implementation, performance and robustness issues of the sliding-mode output feedback controller are illustrated in a simulation study of a distributed parameter system governed by the linearization around the spatially-uniform steady-state solution of the Kuramoto–Sivashinsky partial differential equation with periodic boundary conditions.  相似文献   

9.
For chemical reactors with non-linear fluid dynamics, a linear model realisation is proposed. The inputs are the ingoing concentration of a certain component in the fluid, and the reaction rate. The output is the outgoing concentration. The realisation makes use of a first-order reaction equation, and the residence time distribution of the fluid particles inside the reactor. Also dead time is incorporated in the modelling. The method is tested on two non-linear models for which the residence time distributions are known analytically. The first model is a series of mixed tanks, and it is shown by simulation that the method gives an accurate approximation of the original model. The second model is a UV disinfection reactor, which has a dead time. For this model, the residence time distribution is first fitted by a form that is suitable for our realisation method. Simulations show that for realistic disturbances a high-performance linear controller can be designed. After that, the residence time distribution of a real life UV reactor (for which we have no model) is fitted by a suitable form. The fit is of the same quality as for the UV reactor model. This indicates that also for the real life UV reactor a high-performance controller can be designed.  相似文献   

10.
This paper studies the control of nonlinear Galerkin systems, which are an important class of nonlinear systems that arise in reduced-order modeling of infinite-dimensional systems. A novel approach is proposed in which a linear parameter-varying (LPV) model representing the Galerkin model is built, where the parameter variation is dictated by a specially designed adaptation scheme. The controller design is then carried out on the simpler LPV model, instead of dealing directly with the complicated nonlinear Galerkin system. An automatically scheduled H-infinity controller is designed using the LPV model, and it is proven that this controller will indeed achieve the desired stabilization when applied to the nonlinear Galerkin model. The approach is illustrated with an example on cavity flow control, where the design is seen to produce satisfactory results in suppressing unwanted oscillations.  相似文献   

11.
《Journal of Process Control》2014,24(11):1671-1690
This paper discusses the development of model predictive control algorithm which accounts for the input and state constraints applied to the parabolic partial differential equations (PDEs) system describing the axial dispersion chemical reactor. Spatially varying terms arising from the nonlinear PDEs model are accounted for in model development. Finite-dimensional modal representation capturing the dominant dynamics of the PDEs system is derived for controller design through Galerkin's method and modal decomposition technique. Tustin's discretization and Cayley transform are used to obtain infinite-dimensional discrete-time dynamic modal representations which are used in subsequent constrained controller design. The proposed discrete-time constrained model predictive control synthesis is constructed in a way that the objective function is only based on the low-order modal representation of the PDEs system, while higher-order modes are utilized only in the constraints of the PDEs state. Finally, the MPC formulations are successfully applied, via simulation results, to the PDEs system with input and state constraints.  相似文献   

12.
Linear parameter-varying (LPV) modelling and control of a nonlinear partial differential equation (PDE) is considered in this article. The one-dimensional viscous Burgers' equation is discretised using a finite difference scheme; the boundary conditions are taken as control inputs and the velocities at two grid points are assumed to be measurable. A nonlinear high-order state space model is generated and proper orthogonal decomposition is used for model order reduction. After assessing the accuracy of the reduced model, a low-order functional observer is designed to estimate the reduced states which are linear combinations of the velocities at all grid points. A discrete-time quasi-LPV model that is affine in scheduling parameters is derived based on the reduced model. A polytopic LPV controller is synthesised based on a generalised plant containing the LPV model and the functional observer. More generally, the proposed method can be used to design an LPV controller for a quasi-LPV system with non-measurable scheduling parameters. Simulation results demonstrate the high tracking performance and disturbance and measurement noise rejection capabilities of the designed LPV controller compared with a linear quadratic Gaussian (LQG) controller based on a linearised model.  相似文献   

13.
We consider the problem of achieving global absolute stability of an unstable equilibrium solution of a semilinear dissipative parabolic partial differential equation (PDE) through boundary control. The state space of the system is extended in order to write the action of the boundary control as an unbounded operator in an abstract evolution equation. Absolute stability via boundary control is accomplished by analyzing a control Lyapunov function based on the infinite-dimensional dynamics and applying a finite-dimensional linear quadratic regulator (LQR) controller. Sufficient conditions for absolute stability of the infinite-dimensional system are established by the feasibility of two finite-dimensional linear matrix inequalities (LMIs). Numerical results are presented for a Dirichlet boundary controlled system, however the analysis in this work applies to Nuemann and Robin type boundary controllers as well.  相似文献   

14.
A two-dimensional model of a distributed parameter bioreactor is studied. The model describes biomass growth and substrate consumption in a continuous-flow fixed-bed denitrification process aimed to lower the level of harmful nutrients (substrates) in communal waste water. The independent variables of the model are the evolving time and the distance measured from the beginning of the reactor tube. The model is being applied to control the substrate level at the output of the reactor. The incoming flow is the control variable, the incoming substrate a disturbance. The existence of solutions of the corresponding system of partial differential equations is considered. A finite element method is applied in discretising the single space variable to obtain a system of ordinary differential equations. The simulation results that complete the paper are in accordance with the physical insight of the real process.  相似文献   

15.
This contribution addresses the development of a linear quadratic (LQ) regulator in order to control the concentration profiles along a catalytic distillation column, which is modelled by a set of coupled hyperbolic partial differential and algebraic equations (PDAEs). The proposed method is based on an infinite-dimensional state-space representation of the PDAE system which is generated by a transport operator. The presence of the algebraic equations, makes the velocity matrix in the transport operator, spatially varying, non-diagonal, and not necessarily negative through of the domain. The optimal control problem is treated using operator Riccati equation (ORE) approach. The existence and uniqueness of the non-negative solution to the ORE are shown and the ORE is converted into a matrix Riccati differential equation which allows the use of a numerical scheme to solve the control problem. The result is then extended to design an optimal proportional plus integral controller which can reject the effect of load losses. The performance of the designed control policy is assessed through a numerical study.  相似文献   

16.
17.
本文考虑带有常数干扰的抽象正则线性系统的状态反馈镇定问题.本文控制设计采用线性系统的动态补偿方法,将传统的PID控制推广到无穷维正则线性系统.通过引入积分作用,控制器可以有效地补偿常数干扰.论文给出了具体的状态反馈法则,并证明了对应闭环系统的指数稳定性.理论结果被应用于带有常数干扰的不稳定热方程,给出了控制器及其闭环系统的指数稳定性,数值仿真验证了本文理论结果的有效性.  相似文献   

18.
针对压水堆动态模型的高度非线性和不确定性特点,本文提出一种自适应保性能跟踪控制器(adaptive guaranteed cost control,AGCC)设计方法.首先以堆芯的点堆方程为基础,引入功率跟踪误差的积分项,构造反应堆的增广状态空间模型,再结合线性参数变化(linear parameter varying,LPV)理论,建立了堆芯系统的多胞LPV模型.该控制器的控制输入由状态反馈控制和不确定性补偿组成,结合保性能控制理论和多胞模型理论,求解线性矩阵不等式得到变增益状态反馈矩阵,确保闭环系统全局渐近稳定;利用李亚普诺夫稳定理论得到不确定性参数的自适应律,实现对系统不确定性的动态补偿.仿真结果表明,该控制器不仅对系统不确定项具有自适应性,而且有较好的负荷跟踪性能.  相似文献   

19.
20.
A robust adaptive neural observer design is proposed for a class of parabolic partial differential equation (PDE) systems with unknown nonlinearities and bounded disturbances. The modal decomposition technique is initially applied to the PDE system to formulate it as an infinite-dimensional singular perturbation model of ordinary differential equations (ODEs). By singular perturbations, an approximate nonlinear ODE system that captures the dominant (slow) dynamics of the PDE system is thus derived. A neural modal observer is subsequently constructed on the basis of the slow system for its state estimation. A linear matrix inequality (LMI) approach to the design of robust adaptive neural modal observers is developed such that the state estimation error of the slow system is uniformly ultimately bounded (UUB) with an ultimate bound. Furthermore, using the existing LMI optimization technique, a suboptimal robust adaptive neural modal observer can be obtained in the sense of minimizing an upper bound of the peak gains in the ultimate bound. In addition, using two-time-scale property of the singularly perturbed model, it is shown that the resulting state estimation error of the actual PDE system is UUB. Finally, the proposed method is applied to the estimation of temperature profile for a catalytic rod.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号