首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了改善磨削强化层的表面质量,将微量润滑(简称MQL)应用于磨削强化工艺。采用MQL技术对40Cr钢进行磨削强化试验,研究了润滑冷却工艺,如磨削液供给方式、MQL喷射流量、空气压力等对磨削强化层深度、表面显微硬度和表面粗糙度等的影响。结果表明:在湿磨条件下,工件表面没有产生强化层;在MQL磨削条件下,获得的强化层深度略低于干磨,但表面显微硬度较干磨有所提高,且MQL下工件表面的粗糙度低于干磨;在MQL磨削强化中,增加MQL喷射流量和空气压力均有利于提高强化层的表面硬度和降低表面粗糙度。因此,MQL磨削强化能提高工件表面的质量,改善零部件的使用性能。  相似文献   

2.
为了研究磨削工艺参数对SiC材料磨削质量的影响规律,利用DMG铣磨加工中心做了SiC陶瓷平面磨削工艺实验,分析研究了包括主轴转速、磨削深度、进给速度在内的磨削工艺参数对工件表面粗糙度的影响。结果表明:工件表面粗糙度随着主轴转速的增加而减小,随着磨削深度和进给速度的增加而增加。在粗糙度工艺试验的基础上,以表面粗糙度最小为目标优选一组磨削工艺参数,进行了小口径SiC陶瓷非球面磨削实验,获得了较低的表面粗糙度值(0.5150μm)和较小的面形精度误差(4.668μm)。  相似文献   

3.
前言磨削时,工件和砂轮都会被磨除,工件磨除量与砂轮磨损量的比值、称为磨削比G,它能有效地用于度量与磨削成本有关的参数。但是在某种程度上,为了获得和保持稳态的磨削条件,如桓定的磨削力、锐利的砂轮表面和恒定的工件表面粗糙度等,一定的砂轮磨损又是必需的。因此,砂轮磨损的预测对于选择有利的磨削条件是很重要的。本文用磨削过程参数的四  相似文献   

4.
氮化硅陶瓷干湿磨削温度与表面质量研究   总被引:1,自引:0,他引:1  
为研究干湿磨两种条件下氮化硅陶瓷温度场特性,以及磨削力、温度场特性与表面质量三者间的关系。在理论分析的基础上运用ABAQUS有限元软件对其进行仿真,最后通过实验分析干湿磨条件下的温度场对其表面特性的影响。得出在干湿磨两种条件下的磨削力与磨削区温度场的关系以及磨削温度场的分布情况;并分析了温度场对其热裂纹的影响与温度和其表面特性的关系。得出磨削力是影响磨削区温度场变化的主要因素;随着磨削表面下深度的增加,湿磨下磨削温度的幅度变化要大于干磨,且磨削温度的幅度变化对其表面特性与裂纹的产生有所影响;干磨条件下的表面粗糙度与微观形貌要优于湿磨条件下。  相似文献   

5.
金刚石砂轮磨削铁氧体的表面粗糙度与形貌分析   总被引:1,自引:1,他引:0  
本文研究了树脂结合剂金刚石砂轮磨削铁氧体材料时,磨削深度、工件进给速度对磨削表面粗糙度和材料去除方式的影响规律,以此探索提高铁氧体磨削表面质量的有效途径。采用单因素法设计试验方案对铁氧体进行磨削,测量表面粗糙度数据并对其进行方差分析,对铁氧体磨削表面形貌进行观察。结果表明:随着磨削深度、工件进给速度的增加,表面粗糙度值升高,同时表面塑性痕迹减少,脆性断裂痕迹增加,且磨削深度对表面粗糙度的影响要比工件进给速度的更显著,因此,制定磨削工艺时,考虑到粗磨为了提高效率,降低表面损伤,优化得到磨削工艺为磨削深度5μm,工件进给速度10 m/min;精磨为了获得较低的表面粗糙度,采用磨削深度5μm、工件进给速度为5 m/min,可以提高磨削表面延展性。  相似文献   

6.
陆胜  罗泽举  刘锬 《机床与液压》2008,36(5):325-327
研究了一种模糊神经网络轧辊磨表面粗糙度智能预测及控制的方法,轧辊磨削精度和表面质量指磨削过程中的加工精度、表面粗糙度和物理机械性能,而表面粗糙度是其中最主要的一个因素.提出的基于模糊神经网络的轧辊磨表面粗糙度智能预测方法对于在轧辊磨削工艺中研究基于模糊神经网络的表面粗糙度预测,对于如何在加工过程中辨识表面粗糙度及时作出砂轮动作的调整,保证轧辊磨削质量有重要意义.同时由于可以实现砂轮表面粗糙度的在线控制与调整,提高了轧辊磨削的生产率.  相似文献   

7.
为研究聚氨酯磨棒对合金灰口铸铁表面磨削质量的影响机制,自制了聚氨酯磨棒,并在磨棒中分别添加粒径为1、6和9μm的金刚石磨粒对合金灰口铸铁进行磨削加工,利用光学显微镜和白光干涉仪对磨削加工后的合金灰口铸铁表面形貌及平均表面粗糙度R_a进行分析比较。结果表明:使用粒径9μm的金刚石磨粒磨削工件表面,其磨削痕迹较深,表面粗糙度较差;相比之下,使用粒径6μm的金刚石磨粒磨削工件,可得到最佳的表面粗糙度,其R_a值可达0.01μm;而使用粒径1μm的金刚石磨粒,其磨削能力最差,材料被推挤到磨料的两侧,造成实际的表面粗糙度不够理想。  相似文献   

8.
介绍了金刚石刀具的发展和技术特点,设计了一种天然金刚石刀具前刀面表面粗糙度修磨控制方法,并通过工艺实验完成了对金刚石刀具的修磨。结果表明:验证了(100)面的金刚石的难磨方向,沿此方向加工后金刚石的表面粗糙度值较低、磨削热较多;易磨方向表面粗糙度较差、磨削热较少。优化修磨角度修磨后,金刚石刀具前刀面表面粗糙度Ra值可达0.3 nm,将其应用在超精密切削中效果良好。   相似文献   

9.
分析了点磨削加工表面形貌及其精度的几种影响因素.研究发现:砂轮速度和磨削深度对表面粗糙度的影响都可归结为未变形切屑厚度的改变.减小点磨削倾斜角,可以减小未变形切屑厚度,从而得到理想的表面粗糙度.加大磨削深度和轴向进给量可提高材料去除率,但会造成粗糙度增大.这可归结为砂轮有效磨粒数的减少导致工件的表面粗糙度降低.点磨削通过改变倾斜角大小来增加参与磨削的有效磨粒数,保证高材料去除率的同时获得良好表面质量.增加光磨次数和应用倾斜型砂轮都增加了磨粒和工件表面轮廓突峰的接触次数,对于改善表面粗糙度十分有益.  相似文献   

10.
低粗糙度磨利通常采用低速磨削。近年来,广西大学磨削研究室在高速低粗糙度磨削方面进行了大量的研究工作,试验表明,高速低粗糙度磨削具有许多低速低粗糙度磨削无法比拟的优点。本文主要论述修整参数对砂轮表面地形的影响,藉助微型计算机和透射电子显微镜还对高速低粗糙度磨削机理进行了一些探讨。  相似文献   

11.
针对SiCp/Al逐层磨削两相三维重构需要精密高效端磨的问题,基于单颗磨粒磨削SiCp/Al的磨削力,在考虑切屑变形力、摩擦力、SiC颗粒断裂破碎力的基础上,建立SiCp/Al的端磨磨削力解析模型,结合试验研究切削速度、工件进给速度和轴向磨削深度等参数对加工表面粗糙度的影响规律,并探讨SiCp/Al金相表面快速磨削的加工工艺。结果表明:构建的端磨磨削力解析模型与试验的法向磨削力Fn的总体平均误差为12.98%,切向磨削力Ft的总体平均误差为3.49%;表面粗糙度随切削速度增大而减小,随进给速度和轴向磨削深度的增大而增大;用磨料颗粒基本尺寸为13.0μm的磨具,经过6次磨抛获得良好金相表面,所需磨削加工时间为600 s,可实现SiCp/Al金相表面的快速磨削。  相似文献   

12.
瓷质玻化砖磨抛加工工艺研究   总被引:3,自引:2,他引:1  
通过详细观察不同磨削抛光条件下瓷质玻化砖的表面形貌和显微结构,分析磨抛过程中砂轮粒度、粒度间隔、磨抛时间、工作材质等因素对表面粗糙度和表面光泽度的影响,研究瓷质玻化砖磨削抛光加工工艺过程,并通过计算机模拟磨粒动态运动轨迹,提出优选砂轮组织和工艺参数的原则。  相似文献   

13.
本文提出了用普通磨料开槽砂轮间断磨与砂页轮磨削陶瓷材料两种加工方案,试验研究了工艺参数对表面粗糙度的影响。结果表明,这两种方法磨削工程陶瓷是完全可行的,在一定的条件下可代替昂贵的金刚石砂轮粗磨与普通砂轮精磨工艺。  相似文献   

14.
砂带修磨线材生产线的工业生产表明修磨的线材表面质量良好。修磨时测定了几个钢种整盘线材的金属切除率、砂带磨损率、磨削比、磨削功率、比磨削能耗、砂带磨削压力及表面粗糙度等,为砂带修磨线材生产线提供了合理的磨削工艺参数。  相似文献   

15.
为评价K444高温合金的磨削加工性能,采用棕刚玉砂轮和白刚玉砂轮进行磨削试验,对比分析其磨削力、磨削比能、磨削工件的表面形貌和表面粗糙度以及砂轮磨损.结果表明:相比于白刚玉砂轮,棕刚玉砂轮的磨削力更小,磨削后工件表面粗糙度低,其表面粗糙度Ra在0.206~0.455μm,更易获得光滑的磨削表面.对表面粗糙度的敏感度分析...  相似文献   

16.
通过分析冷冲模磨削加工中表面粗糙度的影响因素,进行了一些磨削加工试验,获得了一定数量的磨削加工参数,为提高磨削加工表面粗糙度质量提供了可靠依据。  相似文献   

17.
砂轮磨粒尺寸及形状对磨削加工的影响   总被引:3,自引:0,他引:3  
利用计算机数字模拟技术作为手段分析研究磨粒尺寸大小及形状对磨削加工过程和被磨削表面的影响,结果得出磨粒径大小影响到砂轮表层的磨粒中实际参加切削的磨粒数目,磨粒粒径越小,被加工表面粗糙度越小,由大大小小不同粒径磨粒的成的砂轮与单一粒径磨粒的砂轮相比,其被加工表面粗糙度要小得多,磨粒几何形状和磨粒表面微观粗糙度的被加工表面粗糙度影响不大。  相似文献   

18.
精密磨削Invar36合金时的磨料选择   总被引:1,自引:0,他引:1  
本文对白刚玉、铬刚玉和绿色碳化硅三种磨料砂轮磨削Invar36合金时的磨削力、磨削温度、表面粗糙度和磨削比进行了对比分析。结果表明:白刚玉砂轮对Invar36合金的磨削比最高,磨削表面粗糙度较好,但是磨削温度和磨削力也比较高,适用于Invar36合金的粗磨;铬刚玉砂轮磨削时的磨削力最小,磨削温度最低,但是磨削比也比较低,因此适用于易变形零件的精密磨削。  相似文献   

19.
本研究以不同系列SKH模具钢材作前置加工,再用精密砂轮磨削达Ra=10~15μm预留为微细加工部分,然后又以CBN砂轮精密研磨模具钢表面。探讨不同主轴转速、进给率及工件硬度之一些加工机制,包括CBN砂轮特性,磨削力、工件表面粗糙度及磨痕显微相片等变化。结果显示在较低硬度SKH51模具钢磨削时提高转速时明显改善表面粗糙度,但是对较高硬度SKH59模具钢磨削时转速的影响较不显著。此外,当较低磨削速度时,磨削力变化很大,造成工件表面粗糙质量变化相当显著。但当较高磨削速度时,磨削力变化几乎维持原水平,导致工件表面粗糙度质量改善趋于缓和,无法再进一步得到较精致表面粗糙度。  相似文献   

20.
高速磨削砂轮磨损对磨削表面质量的影响研究   总被引:1,自引:0,他引:1  
基于陶瓷CBN砂轮对渗碳钢20Cr Mn Ti开展了高速外圆磨削试验。在外圆磨削余量和工艺参数固定的情况下对工件进行连续磨削,以工件上的磨除体积为砂轮磨损指标,考察了砂轮磨损对工件表面粗糙度、残余应力、表层金相组织和显微硬度变化的影响。实验结果表明工件表面粗糙度会随着砂轮磨损而上升,表面残余应力随着砂轮磨损逐渐呈现拉应力的趋势,磨削表面会出现回火软化变质层。该结果可为进一步研究高速磨削机理及优化工艺参数提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号