首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
基于数值优化的跨音速压气机动叶三维设计   总被引:1,自引:0,他引:1  
实验验证了三维粘性流场求解程序,然后采用基于梯度法的数值优化程序对跨音压气机动叶积叠线进行优化设计,得到了弯掠结合的三维叶片,并对其进行了数值模拟及详细的流场分析.结果表明采用弯掠的三维动叶可以有效的改变叶片排内三维激波结构,降低尾迹损失,显著提高动叶的整体绝热效率,并使动叶具有更加良好的变工况性能.  相似文献   

2.
针对高负荷氦气压气机中角区分离、叶顶泄漏严重带来的效率损失问题,以单级氦气压缩机为研究对象,利用CFD方法,分析了不同弯曲角度下氦气压气机内部的角区损失和叶顶泄漏损失,并优化了现有五级轴流氦气压气机。结果表明:叶片正弯会增加端区处的静压,减少角区分离,进而降低角区损失;对动叶而言,在设计攻角下正弯也会增加前缘损失;动叶叶顶反弯使泄漏流远离下一个叶片的压力面,而合适的反弯角度可以降低叶顶泄漏量;选取合适的弯曲角度使五级轴流压气机设计点效率提高1.85%。  相似文献   

3.
为解决清洗水在轴流压气机盘轮毂凹腔内无法排出的问题,对轴流压气机盘轮毂进行优化设计,并 对优化后的轴流压气 的排水功能、零件 、振 寿命 。结果表明,优化后的轴流压气 : 排水效果明显,零件变形 储备系数变化 ,振型及振动频率变化 ,且疲劳寿命变化 。 优化后的轴流压气 型 的使用要求,优化方案可行。  相似文献   

4.
轴流压气机多叶片排的气动优化设计   总被引:3,自引:2,他引:3       下载免费PDF全文
尉涵  袁新 《热能动力工程》2005,20(6):603-606
对某多级轴流压气机前三排叶片径向积叠方案进行了气动优化。该方案以商用软件iSIGHT作为平台,利用试验设计方法对整个搜索空间进行初步探索,采用逐次序列二次规划算法进行局部寻优,利用商业软件NUMECA进行粘性流场数值评估。对压气机全工况性能的计算表明,在流量和压比不减少的情况下,优化后的叶型设计工况和非设计工况性能均得到了改善。  相似文献   

5.
据《ASME Journal of Turbomachinery》2005年7月号报道,通过求解利用高阶方式离散化的非定常雷诺平均的纳维尔一斯托克斯方程,得到的结果表明在宽广的冲角范围内通过抽吸和吹除附面层可以有效地控制无序不稳定的分离流动,导致提高了轴流压气机叶栅时间平均的气动力性能。  相似文献   

6.
该文通过对MS6001型燃气轮机压气机一级动叶片断裂的事故原因进行了多方面的分析,并总结了事故教训和提出防止事故的对策,以供其它电厂同类机组维护时借鉴。图3参3  相似文献   

7.
采用气固两相流计算方法,对某型燃气轮机压气机实际工作环境中沙尘颗粒对压气机叶片磨损特性进行了全三维数值模拟研究,分析了叶片表面磨损位置的分布情况。研究表明:同级与不同级压气机叶片均呈现出明显的非均匀磨损特性,同级叶片的最大磨损浓度可以达到最小磨损浓度的2.9倍,不同级叶片的平均磨损浓度最大相差17.8倍;同一叶片上,颗粒对叶片前缘的磨损程度高于尾缘;随着转速的增大叶片的磨损率最大增加120%且非均匀性进一步增强。  相似文献   

8.
将一跨音速静叶栅数值计算结果与实验结果进行了比较,表明计算与实验结果吻合的较好.为了讨论跨音速压气机中弯掠叶片适用的展弦比条件,在0°攻角下,展弦比为1.25、1.50和2.00,对0~30°弯掠叶片流场进行了数值分析,结果表明,当10°弯掠角时,小展弦比弯掠叶片对叶片性能影响较为明显;而在20°弯掠角时,大展弦比弯掠叶片对叶片性能影响较为明显.弯掠叶片使前缘激波转化为斜激波,并减弱了通道激波的强度,因而降低了叶栅激波损失.可以证明,在跨音速条件下展弦比的大小是如何使用弯掠叶片的一个重要的参考因素.  相似文献   

9.
压气机叶片多工况气动优化设计研究   总被引:2,自引:0,他引:2  
采用数值优化方法对跨声速压气机转子叶片进行了多工况气动优化设计,并对设计前后的几何形状、总体性能及流场的变化进行了详细的分析对比。结果表明,压气机转子前缘激波后掠可以有效地降低损失。优化后叶片的变工况性能非常好。各个工况点的质量流量基本不变,并且叶片稳定工作范围有所扩大。  相似文献   

10.
轴流压气机设计体系对压气机的设计周期和性能有着重要影响。为了能够更好地了解轴流压气机设计体系的发展情况,本文对其进行了整理综述。首先,结合轴流压气机涉及到的设计方法,对国内外轴流压气机设计的发展过程进行了介绍,主要包括一维二维设计体系、准三维设计体系和全三维流场计算模拟技术;然后,在整理完整设计体系要求的基础上,简述了国内外现有比较完整的轴流压气机设计体系。就目前发展来看,随着工程要求的不断提高以及计算机技术的提升,全三维流场计算模拟技术势必会成为今后的发展焦点,各公司和研究机构也在此基础上对原有的设计体系开展技术攻关。  相似文献   

11.
某氦气压气机三维优化设计   总被引:1,自引:0,他引:1       下载免费PDF全文
对某氦气压气机设计方案三维数值模拟计算结果特点进行分析,指出了三维优化改型设计方向和指导原则,通过调整叶片厚度分布、叶片尾缘型线曲率和采用端弯技术等方法,对原型氦气压气机气动设计方案进行了全三维优化设计,对比分析三维优化设计前后数值模拟计算结果,三维优化设计后压气机效率提高2个百分点,有效控制了二次流动进一步发展。  相似文献   

12.
基于均匀设计和遗传算法的离心压缩机叶片优化设计   总被引:1,自引:0,他引:1  
舒信伟  谷传纲  肖军  高闯 《动力工程》2007,27(5):713-716
将均匀设计、CFD技术、回归分析方法与遗传算法相结合,发展了一种离心压缩机叶片优化设计方法.均匀设计用来生成试验样本点几何信息,各样本点性能评估分析则借助CFD技术完成,回归分析方法用于对样本点的信息进行函数逼近,最后由遗传算法对回归分析得到的逼近函数进行全局寻优.以极大化等熵效率为目标函数,将该优化方法应用于某离心压缩机叶片优化设计.结果表明:与初始叶轮相比,优化后叶轮的等熵效率有了一定的提高,说明该优化方法是有效的.  相似文献   

13.
为了在具有不同负荷的压气机叶栅的初始设计过程中选取最大厚度位置,采用数值方法对在不同折转角的高亚音来流条件下对扩压叶栅进行了大量的系统性研究,分析了最大厚度位置、折转角以及稠度3个叶栅几何参数对叶栅变冲角特性以及对最小损失冲角下的叶栅气动性能的影响规律.基于大量叶栅样本建立数学模型,用来定量描述最小损失冲角,以及最小损...  相似文献   

14.
将优化理论引入压气机叶型设计,建立了具有自动优化设计能力的平台。该平台由自主开发的二维叶型生成程序、网格生成软件Gambit、流场计算分析软件CFX以及自主开发的优化模块组成。以某地面重型燃气轮机压气机叶型为优化对象,以总压损失系数为目标函数,流场分析中考虑转捩情况。优化设计之后,叶型气动性能有较明显改善。设计工况下叶型总压损失系数较原型下降了3.63%,非设计工况下的性能也优于原型。  相似文献   

15.
跨音轴流压气机气动设计与数值优化   总被引:1,自引:0,他引:1  
介绍了带有进口导流叶片的三级跨音轴流压气机的气动设计与数值优化过程,气动设计采用准三维体系,包括一维平均流线设计、S2流面通流设计和任意中弧线叶片造型设计,并利用商用软件Numeca进行压气机流场分析.采用遗传算法结合人工神经网络的全局优化方法对第一级跨音动叶在多级环境下进行三维数值优化.结果表明:与优化前相比,优化后跨音级动叶叶尖的激波-边界层干涉损失明显降低,第一级动叶与三级压气机整机近设计点的绝热效率分别提高了0.87%和0.37%,压气机整机的质量流量、总压比、绝热效率和失速裕度均能够满足设计目标.  相似文献   

16.
应用Beam-Warming近似隐式因子分解格式以及MML代数湍流模型,采用拟压缩性方法求解雷诺平均拟压缩N-S方程组,对正倾斜叶片压气机叶栅内三维粘性流场进行了数值研究,并与直叶栅进行了对照。结果发现,正倾斜叶栅中上、下通道涡的发生、发展过程与直叶栅存在明显的差异,这导致正倾斜侧二次流减弱,负倾斜侧二次流高损失区扩大,流动状况恶化,叶栅顶部区域的附面层分离发展成一个向叶栅中部扩展的更大的区域。计算与实验结果比较,两者吻合较好。  相似文献   

17.
杨策  王航 《内燃机学报》2003,21(3):272-276
介绍了一个带有分流叶片的小流量离心压气机的设计过程。这个叶轮的主要设计参数为流量0.215kg/s,转速95000r/min,压比1.8。简要介绍了离心压气机设计系统,其中包括初步设计及优化模块,性能仿真模块,叶轮造型模块。使用三维NS方程对所设计的离心压气机在设计点的性能进行了计算,计算结果表明所设计的离心压气机基本能够满足设计要求。  相似文献   

18.
为了提升低转速工况下压气机的气动性能,采用人工神经网络与遗传算法相结合的优化方法对某单级离心压气机离心叶轮的弯特性进行优化计算。利用NUMECA软件对该离心压气机进行了不同转速的数值模拟,得到压气机不同工况下的气动性能。通过设置不同控制参数和曲线形式对离心叶轮叶片进行参数化拟合,以8个改变叶片弯特性的参数为自由参数进行了叶型优化设计,最终得到了优化后的叶轮叶片。结果表明:优化后在低转速的设计工况下离心压气机压比增加了4.69%,稳定裕度拓宽了17.41%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号