首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we first derive a posteriori error estimators of residual type for the finite element approximation of the p-Laplacian, and show that they are reliable, and efficient up to higher order terms. We then construct some a posteriori error estimators based on gradient recovery. We further compare the two types of a posteriori error estimators. It is found that there exist some relationships between the two types of estimators, which are similar to those held in the case of the Laplacian. It is shown that the a posteriori error estimators based on gradient recovery are equivalent to the discretization error in a quasi-norm provided the solution is sufficiently smooth and mesh is uniform. Under stronger conditions, superconvergnece properties have been established for the used gradient recovery operator, and then some of the gradient recovery based estimates are further shown to be asymptotically exact to the discretization error in a quasi-norm. Numerical results demonstrating these a posteriori estimates are also presented.  相似文献   

2.
In this paper we derive and analyze some a posteriori error estimators for the stabilized P1 nonconforming approximation of the Stokes problem involving the strain tensor. This will be done by decomposing the numerical error in a proper way into conforming and nonconforming contributions. The error estimator for the nonconforming error is obtained in the standard way, and the implicit error estimator for the conforming error is derived by applying the equilibrated residual method. A crucial part of this work is construction of approximate normal stresses on interelement boundaries which will serve as equilibrated Neumann data for local Stokes problems. It turns out that such normal stresses can be simply computed by local weak residuals of the discrete system plus jumps of the velocity solution and that a stronger equilibration condition is satisfied to ensure solvability of local Stokes problems. We also derive a simple explicit error estimator based on the nonsymmetric tensor recovery of the normal stress error. Numerical results are provided to illustrate the performance of our error estimators.  相似文献   

3.
Jikun Zhao  Shaochun Chen 《Calcolo》2014,51(2):287-304
Based on equilibration of side fluxes, an a posteriori error estimator is obtained for the linear triangular element for the Poisson equation, which can be computed locally. We present a procedure for constructing the estimator in which we use the Lagrange multiplier similar to the usual equilibrated residual method introduced by Ainsworth and Oden. The estimator is shown to provide guaranteed upper bound, and local lower bounds on the error up to a multiplicative constant depending only on the geometry. Based on this, we give another error estimator which can be directly constructed without solving local Neumann problems and also provide the two-sided bounds on the error. Finally, numerical tests show our error estimators are very efficient.  相似文献   

4.
A posteriori error estimators based on auxiliary subspace techniques for second order elliptic problems in \(\mathbb {R}^d\ (d\ge 2)\) are considered. In this approach, the solution of a global problem is utilized as the error estimator. As the continuity and coercivity of the problem trivially leads to an efficiency bound, the main focus of this paper is to derive an analogous effectivity bound and to determine the computational complexity of the auxiliary approximation problem. With a carefully chosen auxiliary subspace, we prove that the error is bounded above by the error estimate up to oscillation terms. In addition, we show that the stiffness matrix of the auxiliary problem is spectrally equivalent to its diagonal. Several numerical experiments are presented verifying the theoretical results.  相似文献   

5.
We introduce a hierarchic a posteriori error estimate for singularly perturbed reaction–diffusion problems. The estimator is based on a Petrov–Galerkin method in which the trial space is enriched with nonpolynomial functions or multiscale functions. We study the equivalence between the a posteriori estimate and the exact error in the energy norm. Moreover, we prove a relationship between the hierarchic estimator and an explicit residual estimator. The approach provides accurate estimates for the boundary layer regions which is confirmed by numerical experiments.  相似文献   

6.
We prove that the standard nonparametric mean estimator for judgment post-stratification is inadmissible under squared error loss within a certain class of linear estimators. We derive alternate estimators that are admissible in this class, and we show that one of them is always better than the standard estimator. The reduction in mean squared error from using this alternate estimator can be as large as 10% for small set sizes and small sample sizes.  相似文献   

7.
In this paper we introduce an hp finite element method to solve a two-dimensional fluid–structure spectral problem. This problem arises from the computation of the vibration modes of a bundle of parallel tubes immersed in an incompressible fluid. We prove the convergence of the method and a priori error estimates for the eigenfunctions and the eigenvalues. We define an a posteriori error estimator of the residual type which can be computed locally from the approximate eigenpair. We show its reliability and efficiency by proving that the estimator is equivalent to the energy norm of the error up to higher order terms, the equivalence constant of the efficiency estimate being suboptimal in that it depends on the polynomial degree. We present an hp adaptive algorithm and several numerical tests which show the performance of the scheme, including some numerical evidence of exponential convergence.  相似文献   

8.
A residual type a posteriori error estimator is presented and analyzed for Weak Galerkin finite element methods for second order elliptic problems. The error estimator is proved to be efficient and reliable through two estimates, one from below and the other from above, in terms of an $H^1$ -equivalent norm for the exact error. Two numerical experiments are conducted to demonstrate the effectiveness of adaptive mesh refinement guided by this estimator.  相似文献   

9.
In this paper, we study the a posteriori error estimates of two-grid finite volume element method for second-order nonlinear elliptic equations. We derive the residual-based a posteriori error estimator and prove the computable upper and lower bounds on the error in H1-norm. The a posteriori error estimator can be used to assess the accuracy of the two-grid finite volume element solutions in practical applications. Numerical examples are provided to illustrate the performance of the proposed estimator.  相似文献   

10.
We develop a residual-based a posteriori error analysis for the augmented mixed methods introduced in [13], [14] for the problem of linear elasticity in the plane. We prove that the proposed a posteriori error estimators are both reliable and efficient. Numerical experiments confirm these theoretical properties and illustrate the ability of the corresponding adaptive algorithms to localize the singularities and large stress regions of the solutions.  相似文献   

11.
In this paper we extend recent results on the a priori and a posteriori error analysis of an augmented mixed finite element method for the linear elasticity problem, to the case of incompressible fluid flows with symmetric stress tensor. Similarly as before, the present approach is based on the introduction of the Galerkin least-squares type terms arising from the constitutive and equilibrium equations, and from the relations defining the pressure in terms of the stress tensor and the rotation in terms of the displacement, all of them multiplied by stabilization parameters. We show that these parameters can be suitably chosen so that the resulting augmented variational formulation is defined by a strongly coercive bilinear form, whence the associated Galerkin scheme becomes well-posed for any choice of finite element subspaces. Next, we present a reliable and efficient residual-based a posteriori error estimator for the augmented mixed finite element scheme. Finally, several numerical results confirming the theoretical properties of this estimator, and illustrating the capability of the corresponding adaptive algorithm to localize the singularities and the large stress regions of the solution, are reported.  相似文献   

12.
A posteriori error estimates for two-body contact problems are established. The discretization is based on mortar finite elements with dual Lagrange multipliers. To define locally the error estimator, Arnold–Winther elements for the stress and equilibrated fluxes for the surface traction are used. Using the Lagrange multiplier on the contact zone as Neumann boundary conditions, equilibrated fluxes can be locally computed. In terms of these fluxes, we define on each element a symmetric and globally H(div)-conforming approximation for the stress. Upper and lower bounds for the discretization error in the energy norm are provided. In contrast to many other approaches, the constant in the upper bound is, up to higher order terms, equal to one. Numerical examples illustrate the reliability and efficiency of the estimator. This work was supported in part by the Deutsche Forschungsgemeinschaft, SFB 404, B8.  相似文献   

13.
In [1, 2] was studied a new type of nonparametric kernel estimators of probability density, whose window width varies depending on the sample, i.e., are data-based. These estimators were called adaptive. New estimators of density are superior in the rate of convergence to classical Rosenblatt-Parzen estimators. However, these valuable properties of estimators were obtained assuming that observations are independent. In this paper, we study properties of these adaptive estimators but assuming that the sample is realization of the stationary in the narrow sense random sequence. The simulation examples for the adaptive estimator constructed by dependent observations which is generated by autoregressive models are represented. The results of the investigation prove the advantage of the adaptive estimator over the classical Rosenblatt-Parzen estimator in the sense of the mean-square error. The rate of mean-square convergence of the limiting estimator (the so-called “ideal” estimator) to the true unknown density according to the dependent sample is found. The consistency of the adaptive estimator constructed by stationary dependent observations is proved.  相似文献   

14.
In this paper we introduce techniques that allow us to define a posteriori error estimators via well-known recovery techniques. These allow us to construct a posteriori error estimators for relatively general problems. Further, we introduce new adaptive procedures that make use of these estimators and, in particular, describe anh-p procedure that is simple to implement and that, as numerical experiments have shown, attains an accelerated rate of convergence expected from theh-p version.  相似文献   

15.
We develop the a posteriori error analysis for a mixed finite element method applied to the coupling of Brinkman and Darcy equations in 3D, modelling the interaction of viscous and non-viscous flow effects across a given interface. The system is formulated in terms of velocity and pressure within the Darcy subdomain, together with vorticity, velocity and pressure of the fluid in the Brinkman region, and a Lagrange multiplier enforcing pressure continuity across the interface. The solvability of a fully-mixed formulation along with a priori error bounds for a finite element method have been recently established in Álvarez et al. ( Comput Methods Appl Mech Eng 307:68–95, 2016). Here we derive a residual-based a posteriori error estimator for such a scheme, and prove its reliability exploiting a global inf-sup condition in combination with suitable Helmholtz decompositions, and interpolation properties of Clément and Raviart–Thomas operators. The estimator is also shown to be efficient, following a localisation strategy and appropriate inverse inequalities. We present numerical tests to confirm the features of the estimator and to illustrate the performance of the method in academic and application-oriented problems.  相似文献   

16.
In this paper, we investigate a discontinuous Galerkin finite element approximation of non-stationary convection dominated diffusion optimal control problems with control constraints. The state variable is approximated by piecewise linear polynomial space and the control variable is discretized by variational discretization concept. Backward Euler method is used for time discretization. With the help of elliptic reconstruction technique residual type a posteriori error estimates are derived for state variable and adjoint state variable, which can be used to guide the mesh refinement in the adaptive algorithm. Numerical experiment is presented, which indicates the good behaviour of the a posteriori error estimators.  相似文献   

17.
We present a posteriori error estimators suitable for automatic mesh refinement in the numerical evaluation of sensitivity by means of the finite element method. Both diffusion (Poisson-type) and elasticity problems are considered, and the equivalence between the true error and the proposed error estimator is proved. Application to shape sensitivity is briefly addressed.  相似文献   

18.
In this contribution, we present an a posteriori error estimator for the incompressible Stokes problem valid for a conventional mixed FE formulation. Due to the saddle-point property of the problem, conventional error estimators developed for pure minimization problems cannot be utilized straight-forwardly. The new estimator is built up by two key ingredients. At first, a computed error approximation, exactly fulfilling the continuity equation for the error, is obtained via local Dirichlet problems. Secondly, we adopt the approach of solving local equilibrated flux-free problems in order to bound the remaining, incompressible, error. In this manner, guaranteed upper and lower bounds, of the velocity “energy norm” of the error as well as goal-oriented (linear) output functionals, with respect to a reference (overkill) mesh are obtained. In particular, it should be noted that this approach requires no computation of hybrid fluxes. Furthermore, the estimator is applicable to mixed FE formulations using continuous pressure approximations, such as the Mini and Taylor–Hood class of elements. In conclusion, a few simple numerical examples are presented, illustrating the accuracy of the error bounds.  相似文献   

19.
We present residual based and p-hierarchical a posteriori error estimators for a Galerkin method coupling finite elements and boundary elements for time–harmonic interface problems in electromagnetics; special emphasis is taken for the eddy current problem. The Galerkin discretization uses lowest order Nédélec elements in the interior domain and vectorial surface rotations of continuous, piecewise linear functions on the interface boundary. Singular, weakly singular and hypersingular boundary integral operators appearing in the variational formulation show up in the terms of the error estimators as well. The estimators are derived from the defect equation using Helmholtz and Hodge decompositions. Numerical tests underline reliability and efficiency of the given error estimators yielding reasonable mesh refinements.  相似文献   

20.
In this paper, a new robust residual type a posteriori error estimator is developed and analyzed for convection–diffusion equations. A novel dual norm is introduced, under which the error estimator is proved to be robust with respect to the singularly perturbed parameter \(\varepsilon \). Both theoretical and numerical results showed that the estimator performs better than the existing ones in literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号