首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assume that P is any path in a bipartite graph G of length k with 2?k?h, G is said to be h-path bipancyclic if there exists a cycle C in G of every even length from 2k to |V(G)| such that P lies in C. In this paper, the following result is obtained: The n-dimensional hypercube Qn with n?3 is (2n−3)-path bipancyclic but is not (2n−2)-path bipancyclic, moreover, a path P of length k with 2?k?2n−3 lies in a cycle of length 2k−2 if and only if P contains two edges of the same dimension. In order to prove the above result we first show that any path of length at most 2n−1 is a subpath of a Hamiltonian path in Qn with n?2, moreover, the upper bound 2n−1 is sharp when n?4.  相似文献   

2.
Independent spanning trees on twisted cubes   总被引:1,自引:0,他引:1  
Multiple independent spanning trees have applications to fault tolerance and data broadcasting in distributed networks. There are two versions of the n independent spanning trees conjecture. The vertex (edge) conjecture is that any n-connected (n-edge-connected) graph has n vertex-independent spanning trees (edge-independent spanning trees) rooted at an arbitrary vertex. Note that the vertex conjecture implies the edge conjecture. The vertex and edge conjectures have been confirmed only for n-connected graphs with n≤4, and they are still open for arbitrary n-connected graph when n≥5. In this paper, we confirm the vertex conjecture (and hence also the edge conjecture) for the n-dimensional twisted cube TQn by providing an O(NlogN) algorithm to construct n vertex-independent spanning trees rooted at any vertex, where N denotes the number of vertices in TQn. Moreover, all independent spanning trees rooted at an arbitrary vertex constructed by our construction method are isomorphic and the height of each tree is n+1 for any integer n≥2.  相似文献   

3.
Let P1,…,Pk be a collection of disjoint point sets in R2 in general position. We prove that for each 1?i?k we can find a plane spanning tree Ti of Pi such that the edges of T1,…,Tk intersect at most , where n is the number of points in P1∪?∪Pk. If the intersection of the convex hulls of P1,…,Pk is nonempty, we can find k spanning cycles such that their edges intersect at most (k−1)n times, this bound is tight. We also prove that if P and Q are disjoint point sets in general position, then the minimum weight spanning trees of P and Q intersect at most 8n times, where |PQ|=n (the weight of an edge is its length).  相似文献   

4.
Meijie Ma 《Information Sciences》2010,180(17):3373-3379
A k-container of a graph G is a set of k internally disjoint paths between u and v. A k-container of G is a k∗-container if it contains all vertices of G. A graph G is k∗-connected if there exists a k∗-container between any two distinct vertices, and a bipartite graph G is k∗-laceable if there exists a k∗-container between any two vertices u and v from different partite sets of G for a given k. A k-connected graph (respectively, bipartite graph) G is f-edge fault-tolerant spanning connected (respectively, laceable) if G − F is w∗-connected for any w with 1 ? w ? k − f and for any set F of f faulty edges in G. This paper shows that the folded hypercube FQn is f-edge fault-tolerant spanning laceable if n(?3) is odd and f ? n − 1, and f-edge fault-tolerant spanning connected if n (?2) is even and f ? n − 2.  相似文献   

5.
In a graph G, a k-container Ck(u,v) is a set of k disjoint paths joining u and v. A k-container Ck(u,v) is k∗-container if every vertex of G is passed by some path in Ck(u,v). A graph G is k∗-connected if there exists a k∗-container between any two vertices. An m-regular graph G is super-connected if G is k∗-connected for any k with 1?k?m. In this paper, we prove that the recursive circulant graphs G(2m,4), proposed by Park and Chwa [Theoret. Comput. Sci. 244 (2000) 35-62], are super-connected if and only if m≠2.  相似文献   

6.
Assume that P is any path in a bipartite graph G of length k with 2?k?h, G is said to be h-path bipancyclic if there exists a cycle C in G of every even length from 2k to |V(G)| such that P lies in C. Based on Lemma 5, the authors of [C.-H. Tsai, S.-Y. Jiang, Path bipancyclicity of hypercubes, Inform. Process. Lett. 101 (2007) 93-97] showed that the n-cube Qn with n?3 is (2n−4)-path bipancyclicity. In this paper, counterexamples to the lemma are given, therefore, their proof fails. And we show the following result: The n-cube Qn with n?3 is (2n−4)-path bipancyclicity but is not (2n−2)-path bipancyclicity, moreover, and a path P of length k with 2?k?2n−4 lies in a cycle of length 2k−2 if and only if P contains two edges of dimension i for some i, 1?i?n. We conjecture that if 2n−4 is replaced by 2n−3, then the above result also holds.  相似文献   

7.
A k-factor of graph G is defined as a k-regular spanning subgraph of G. For instance, a 2-factor of G is a set of cycles that span G. 2-factors have multiple applications in Graph Theory, Computer Graphics, and Computational Geometry. We define a simple 2-factor as a 2-factor without degenerate cycles. In general, simple k-factors are defined as k-regular spanning subgraphs where no edge is used more than once. We propose a new algorithm for computing simple k-factors for all values of k?2.  相似文献   

8.
Che-Nan Kuo 《Information Sciences》2010,180(15):2904-3675
A graph is said to be pancyclic if it contains cycles of every length from its girth to its order inclusive; and a bipartite graph is said to be bipancyclic if it contains cycles of every even length from its girth to its order. The pancyclicity or the bipancyclicity of a given network is an important factor in determining whether the network’s topology can simulate rings of various lengths. An n-dimensional folded hypercube FQn is an attractive variant of an n-dimensional hypercube Qn that is obtained by establishing some extra edges between the vertices of Qn. FQn for any odd n is known to be bipartite. In this paper, we explore the pancyclicity and bipancyclicity of FQn. For any FQn (n ? 2) with at most 2n − 3 faulty edges, where each vertex is incident to at least two fault-free edges, we prove that there exists a fault-free cycle of every even length from 4 to 2n; and when n ? 2 is even, we prove there also exists a fault-free cycle of every odd length from n + 1 to 2n − 1. The result is optimal with respect to the number of faulty edges tolerated.  相似文献   

9.
A bipartite graph G is bipancyclic if G has a cycle of length l for every even 4?l?|V(G)|. For a bipancyclic graph G and any edge e, G is edge-bipancyclic if e lies on a cycle of any even length l of G. In this paper, we show that the bubble-sort graph Bn is bipancyclic for n?4 and also show that it is edge-bipancyclic for n?5. Assume that F is a subset of E(Bn). We prove that BnF is bipancyclic, when n?4 and |F|?n−3. Since Bn is a (n−1)-regular graph, this result is optimal in the worst case.  相似文献   

10.
The independent spanning trees (ISTs) problem attempts to construct a set of pairwise independent spanning trees and it has numerous applications in networks such as data broadcasting, scattering and reliable communication protocols. The well-known ISTs conjecture, Vertex/Edge Conjecture, states that any n-connected/n-edge-connected graph has n vertex-ISTs/edge-ISTs rooted at an arbitrary vertex r. It has been shown that the Vertex Conjecture implies the Edge Conjecture. In this paper, we consider the independent spanning trees problem on the n-dimensional locally twisted cube LTQn. The very recent algorithm proposed by Hsieh and Tu (2009) [12] is designed to construct n edge-ISTs rooted at vertex 0 for LTQn. However, we find out that LTQn is not vertex-transitive when n≥4; therefore Hsieh and Tu’s result does not solve the Edge Conjecture for LTQn. In this paper, we propose an algorithm for constructing n vertex-ISTs for LTQn; consequently, we confirm the Vertex Conjecture (and hence also the Edge Conjecture) for LTQn.  相似文献   

11.
Given a Cartesian productG=G1× … ×Gm(m≥ 2) of nontrivial connected graphsGiand then-dimensional baseBde Bruijn graphD=DB(n), it is investigated whether or notGis a spanning subgraph ofD. Special attention is given to graphsG1× … ×Gmwhich are relevant for parallel computing, namely, to Cartesian products of paths (grids) or cycles (tori). For 2-dimensional de Bruijn graphsD, we present a theorem stating that certain structural assumptions on the factorsG1, …,Gmensure thatG1× … ×Gmis a spanning subgraph ofD. As corollaries, we obtain results improving previous results of Heydemannet al.(J. Parallel Distrib. Comput.23 (1994), 104–111) on embedding grids and tori into de Bruijn graphs. Specifically, we obtain that (i) any gridG=G1× … ×Gmis a spanning subgraph ofD=DB(2) provided that |G| = |D|, and (ii) any torusG=G1× … ×Gmis a spanning subgraph ofD=DB(2) provided that |G| = |D| and that theGiare cycles of even length ≥4. We show that these results have consequences for the casen> 2, too: for evenn, we apply our results to obtain embeddings of grids and toriGinto de Bruijn graphsDB(n) with dilationn/2, where the baseBis a fixed integer ≥2, andnis big enough to ensure |G| ≤ |DB(n)|. We also contrast our results forn= 2 with nonexistence results forn≥ 3 and briefly describe experimental results in the area of parallel image processing.  相似文献   

12.
A bipartite graph is bipancyclic if it contains a cycle of every even length from 4 to |V(G)| inclusive. It has been shown that Qn is bipancyclic if and only if n?2. In this paper, we improve this result by showing that every edge of QnE′ lies on a cycle of every even length from 4 to |V(G)| inclusive where E′ is a subset of E(Qn) with |E′|?n−2. The result is proved to be optimal. To get this result, we also prove that there exists a path of length l joining any two different vertices x and y of Qn when h(x,y)?l?|V(G)|−1 and lh(x,y) is even where h(x,y) is the Hamming distance between x and y.  相似文献   

13.
A graph G(VE) (|V|⩾2k) satisfies property Ak if, given k pairs of distinct nodes (s1t1), …, (sktk) of V(G), there are k mutually node-disjoint paths, one connecting si and ti for each i, 1⩽ik. A necessary condition for any graph to satisfy Ak is that it is (2k−1)-connected. Hypercubes are important interconnection topologies for parallel computation and communication networks. It has been known that hypercubes of dimension n (which are n-connected) satisfy An/2⌉. In this paper we give an algorithm which, given k=⌈n/2⌉ pairs of distinct nodes (s1t1), …, (sktk) in the n-dimensional hypercube, finds the k disjoint paths of length at most n+⌈log n⌉+1 in O(n2 log* n) time.  相似文献   

14.
The k-ary n-cube has been one of the most popular interconnection networks for massively parallel systems. Given a set P of at most 2n − 2 (n ? 2) prescribed edges and two vertices u and v, we show that the 3-ary n-cube contains a Hamiltonian path between u and v passing through all edges of P if and only if the subgraph induced by P consists of pairwise vertex-disjoint paths, none of them having u or v as internal vertices or both of them as end-vertices. As an immediate result, the 3-ary n-cube contains a Hamiltonian cycle passing through a set P of at most 2n − 1 prescribed edges if and only if the subgraph induced by P consists of pairwise vertex-disjoint paths.  相似文献   

15.
In 1980, Jackson proved that every 2-connected k-regular graph with at most 3k vertices is Hamiltonian. This result has been extended in several papers. In this note, we determine the minimum number of vertices in a connected k-regular graph that is not Hamiltonian, and we also solve the analogous problem for Hamiltonian paths. Further, we characterize the smallest connected k-regular graphs without a Hamiltonian cycle.  相似文献   

16.
The (k−1)-fault diameter Dk(G) of a k-connected graph G is the maximum diameter of an induced subgraph by deleting at most k−1 vertices from G. This paper considers the fault diameter of the product graph G1G2 of two graphs G1 and G2 and proves that Dk1+k2(G1G2)?Dk1(G1)+Dk2(G2)+1 if G1 is k1-connected and G2 is k2-connected. This generalizes some known results such as Bani? and ?erovnik [I. Bani?, J. ?erovnik, Fault-diameter of Cartesian graph bundles, Inform. Process. Lett. 100 (2) (2006) 47-51].  相似文献   

17.
A k -container C(u,v) of a graph G is a set of k disjoint paths between u and v. A k-container C(u,v) of G is a k * -container if it contains all vertices of G. A graph G is k * -connected if there exists a k *-container between any two distinct vertices of G. Therefore, a graph is 1*-connected (respectively, 2*-connected) if and only if it is Hamiltonian connected (respectively, Hamiltonian). A graph G is super spanning connected if there exists a k *-container between any two distinct vertices of G for every k with 1≤kκ(G) where κ(G) is the connectivity of G. A bipartite graph G is k * -laceable if there exists a k *-container between any two vertices from different partite set of G. A bipartite graph G is super spanning laceable if there exists a k *-container between any two vertices from different partite set of G for every k with 1≤kκ(G). In this paper, we prove that the enhanced hypercube Q n,m is super spanning laceable if m is an odd integer and super spanning connected if otherwise.
Chung-Hao ChangEmail:
  相似文献   

18.
We consider almost d-regular graphs, i.e., graphs having all vertex degrees equal to either d or d − 1. It is known that for each d′d every d-regular graph contains an almost d′-regular spanning subgraph. We give an algorithm for selecting such a subgraph in optimal linear time.  相似文献   

19.
《国际计算机数学杂志》2012,89(8):1692-1708
Given (i) any k vertices u 1, u 2, …, u k (1≤k<n) in the n-cube Q n , where (u 1, u 2), (u 3, u 4), …, (u 2m?1, u 2m ) (m≤? k\2 ?) are edges of the same dimension, (ii) any k positive integers a 1, a 2, …, a k such that a 1, a 2, …, a 2m are odd and a 2m+1, …, a k are even, with a 1+a 2+···+a k =2 n , and (iii) k subsets W 1, W 2, …, W k of V(Q n ) with |W i |≤n?k and if a i =1, then u i ¬∈W i , for 1≤ik, we show that there exist k vertex-disjoint paths P (1), P (2), …, P (k) in Q n where P (i) contains a i vertices, its origin is u i , and its terminus is in V(Q n )/ W i , for 1≤ik. We also prove a similar result which extends two well-known results of Havel, [I. Havel On hamilton circuits and spanning trees of hypercubes, ?asopis pro P?stování Matematiky, 109 (1984), pp. 135–152.] and Nebeský, [L. Nebeský Embedding m-quasistars into n-cubes, Czech. Math. J. 38 (1988), pp. 705–712].  相似文献   

20.
For compact Euclidean bodiesP, Q, we define λ(P, Q) to be the smallest ratior/s wherer > 0,s > 0 satisfy \(sQ' \subseteq P \subseteq rQ''\) . HeresQ denotes a scaling ofQ by the factors, andQ′,Q″ are some translates ofQ. This function λ gives us a new distance function between bodies which, unlike previously studied measures, is invariant under affine transformations. If homothetic bodies are identified, the logarithm of this function is a metric. (Two bodies arehomothetic if one can be obtained from the other by scaling and translation.) For integerk ≥ 3, define λ(k) to be the minimum value such that for each convex polygonP there exists a convexk-gonQ with λ(P, Q) ≤ λ(k). Among other results, we prove that 2.118 ... <-λ(3) ≤ 2.25 and λ(k) = 1 + Θ(k ?2). We give anO(n 2 log2 n)-time algorithm which, for any input convexn-gonP, finds a triangleT that minimizes λ(T, P) among triangles. However, in linear time we can find a trianglet with λ(t, P)<-2.25. Our study is motivated by the attempt to reduce the complexity of the polygon containment problem, and also the motion-planning problem. In each case we describe algorithms which run faster when certain implicitslackness parameters of the input are bounded away from 1. These algorithms illustrate a new algorithmic paradigm in computational geometry for coping with complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号