首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 76 毫秒
1.
双电层电容器用中孔活性炭电极的电化学性能   总被引:12,自引:6,他引:12  
选用中孔活性炭作为双电层电容器的电极材料,实验发现,中孔活性炭电化学性能优异,比表面积利用率高达93.5%,用水蒸气活化可以增加活性炭的比表面积,随着活化时间的延长,活性炭收率降低,活化2h收率仅为26.5%,同时比表面积从原来的760m^2/g增加到1480m^2/g,且主要在2nm附近孔结构分布强度增强,比电容随活化时间的延长而增加,但增速低于比表面积的增加幅度。  相似文献   

2.
以葡萄糖为碳源,由金属框架有机物( MOF)高效地合成出一种具有三维层次孔结构的多孔炭.当葡萄糖渗入到方形MOF的表面或内部空隙之后,逐步进行聚合和炭化.在此过程中,MOF分解出ZnO,ZnO进一步被基体炭或CO还原成Zn;而Zn又在炭化过程中逸出,以致形成连续的基体炭组织.当所合成的多孔炭用作双电层电容器电极材料时,在1 mo1/L NEt4 BF4/碳酸丙烯酯电解液体系中,其初始比电容达175F·g-1(电流强度0.6A·g-1),并在12A·g-1大电流密度下电容保持率高达94.2%.  相似文献   

3.
以椰壳为原料,ZnCl2为活化剂,用同步物理-化学活化法制备活性炭。所得的炭样品用氮吸附法表征,并根据77K时的吸附-脱附等温线计算了它们的比表面和孔结构参数。用恒流充放电和循环伏安法研究了由活性炭电极与KOH电解质构成的双电层电容器的性能。结果显示,在5mA时放电,活性炭比电容最高达到360F/g:在大电流50mA时,比容量仍超过200F/g。同时分析研究了炭材料比表面积和孔径对电化学性能的影响,发现比表面积与比电容关联性不明显;而孔径大小对炭材料的比电容影响很大。在小电流放电时,中孔炭表面对比电容的贡献明显大于微孔炭表面;随着放电电流的增加,由中孔炭表面构成的双电层电容下降显著,而微孔炭表面的双电层电容下降幅度较小。在大电流放电时,孔径在1.5nm-2nm的较大微孔对储存电能起主要作用。  相似文献   

4.
以正硅酸乙酯为模板硅源,间苯二酚—甲醛凝胶为炭前驱体,采用同步合成模板炭化(SSTCM)法制备了具有可控结构的中孔炭材料。炭材料的比表面积可达1500m^2/g,平均孔径在3nm~10nm之间。经过酸催化水解预处理的二氧化硅模板前驱体溶液与间苯二酚—甲醛溶液混合,碱性条件下使两者的溶胶凝胶反应同步发生,得到有机,无机凝胶混合物。再经炭化、HF去模,制得SSTCM炭材料。N2等温吸脱附研究表明,与炭前驱体聚合物同步合成的结构可调的二氧化硅模板,导致了SSTCM炭材料可控中孔结构的形成。循环伏安研究表明,采用这种同步合成模板炭化法制备的SSTCM炭材料质量比容量达270F/g,炭材料具有的典型中孔结构使其可能成为一种理想的双电层电容器电极材料。  相似文献   

5.
用直流恒流循环法考察在不同的活化条件下得到的酚醛树脂活性炭微球作为双电层电容器电极的电化学性能。结果表明,要得到高比电容的电容器电极材料,水蒸气活化的最佳条件为:在800℃下活化1h,水蒸气的量控制为氮气量的40%。在此条件下得到的酚醛树脂活性炭微球作为电极具有良好的循环充放电性能,比电容可达到143F/g,充放电效率高达98%。在2.0nm~7.5nm之间的孔对活性炭微球的比电容影响显著。  相似文献   

6.
用直流恒流循环法考察在不同的活化条件下得到的酚醛树脂活性炭微球作为双电层电容器电极的电化学性能。结果表明,要得到高比电容的电容器电极材料,水蒸气活化的最佳条件为:在800℃下活化1h,水蒸气的量控制为氮气量的40%。在此条件下得到的酚醛树脂活性炭微球作为电极具有良好的循环充放电性能,比电容可达到143F/g,充放电效率高达98%。在2.0nm~7.5nm之间的孔对活性炭微球的比电容影响显著。  相似文献   

7.
以河南永城无烟煤为原料、KOH为活化剂制备了高比表面积的煤基活性炭,采用低温N_2吸附法对活性炭的比表面积、孔容及孔径分布进行了表征,并对其用作双电层电容器电极材料的电化学性能进行了系统测试.在KOH与煤的质量比为4:1、活化温度为800℃、活化时间为1h的条件下制备出的活性炭其比表面积高达3224m~2/g,总孔容达1.76cm~3/g,中孔率为57.95%.该活性炭电极在3mol/L KOH电解液中的比电容高达324F/g,且具有良好的循环性能,当电流密度为40mA/g时,经1000次循环后,比电容保持率超过92%,且其漏电流很小.  相似文献   

8.
模板法中孔炭及其双电层电容性能(英文)   总被引:2,自引:0,他引:2  
以乙酸镁和柠檬酸镁热解得到的MgO为模板,热塑性沥青为碳前驱体,采用程序升温一步炭化法(950℃,N2)制备了高比表面积中孔炭材料。尽管未进行活化,两种模板前驱体与沥青混合所制中孔炭材料均可获得非常高的比表面积。以这两种中孔炭作为双电层电容器的电极材料,在质量分数为30%的KOH电解液中测试其电化学性能。结果表明:这两种中孔炭电极均可得到较高的比电容量和理想的功率特性,尤其是柠檬酸镁作前驱体时,MgO与沥青质量比为4时得到的炭材料(MCP8/2)在20mA.g-1的电流密度下得到284F.g-1的比电容量,且在1000mA.g-1时仍能得到236F.g-1的比电容。交流阻抗测试表明:组装的双电层电容器的内部阻抗均小于3.5Ω。  相似文献   

9.
活性炭表面改性对双电层电容器电化学性能的影响   总被引:1,自引:1,他引:0  
通过氢气还原改性和浓硝酸氧化处理对石油焦基活性炭(ACs)进行改性.采用氮气吸附和脱附等温线计算改性ACs的BET比表面积、 DFT孔径分布及孔容,以XPS方法表征改性ACs的表面含氧官能团种类及含量,改性ACs的电化学性能通过直流循环充放电、循环伏安等表征.结果表明:浓硝酸处理后,ACs比表面积和孔容均稍有减少,表面含氧官能团和比电容明显增加,内阻和自放电显著增大;氢气改性后,ACs比表面积和孔容亦稍有减少,孔径分布的变化使比电容明显增加,氧化官能团的减少降低了内阻并减少了自放电.即,氢气改性ACs的电化学性能明显提高,增加了比电容,降低了内阻和自放电.  相似文献   

10.
方勤  杨邦朝 《功能材料》2005,36(12):1889-1891
以石油焦为原料,运用化学活化法制备了超级电容器用高比表面积中孔活性炭。利用XRD、SEM和BET对实验制备的中孔炭进行了分析和表征。以实验制备的活性炭为超级电容器电极材料,利用恒流充放电测试对其电容特性进行了研究。结果表明,实验研制的活性炭的比表面积为1733m^2/g,中孔含量达到60.6%,在150mA/g的电流密度下其比容达到180F/g,而且基于实验研制的活性炭的超级电容器具有低内阻和良好的功率特性。  相似文献   

11.
分别以炭气凝胶(CAG),炭黑(CB)以及石墨(G)为导电剂与KOH活化法高比表面积活性炭(HSAC)制备复合电极,组装成双电层电容器,在(C2H5)4NBF4/丙烯碳酸盐电解液体系中进行交流阻抗测试分析。应用动力学及电子传递控制的等效电路模型对各电极的实验阻抗数据进行拟合得到相应的模型参数,串联溶液电阻Rs、极化电阻Rp、能斯特边界层厚度δ及平均孔内离子扩散系数D。结果表明,炭气凝胶复合电极的孔内离子扩散系数D最高,极化电阻Rp与炭黑复合电极接近。炭气凝胶电极的内阻为各电极中最低并且具有最高的比电容。  相似文献   

12.
通过再活化浸渍金属盐的活性炭来发展中孔结构   总被引:8,自引:5,他引:8  
研究了在椰子壳活性炭上浸渍金属盐(硝酸铁和硫酸铁)后,在二氧化碳气氛中催化活化对中孔结构的影响。发现硝酸铁对活性炭比表面积(-1930m^2/g)的增加和中孔结构(-10nm)的发展更有效。改性活性炭具有发达的中孔结构,显示了更大的维生素B12吸附容量(是改性前的5倍~8倍)和更快的吸附速度。中孔结构的发展基于三个方面的原因:(1)在活化过程中,浸渍在活性炭微孔内的金属盐分解所释放的氧化性气体与微孔碳壁反应,扩大了孔径;(2)在高温下,来自于金属盐的金属氧化物被碳还原,扩大了孔径;(3)在金属铁存在下,碳壁被催化活化,大大提高了活性炭的中孔率。由此提供了一种廉价的从商业活性炭制备中孔活性炭的有效途径。  相似文献   

13.
椰壳活性炭基超级电容器的研制与开发   总被引:15,自引:8,他引:15  
为了开发体积小巧、大功率放电性能优良的超级电容器,选用比表面积1 660m2/g的椰壳活性炭,采用扣式电池结构,通过恒电流充放电、电化学阻抗谱、扫描电子显微镜等方法对其用于超级电容器的性能进行了考察。结果表明,选用椰壳活性炭的最大比容量为79F/g,大功率放电性能优良。继而采用该种椰壳活性炭为电极活性物质,以6m o l/L KOH为电解液,外包装采用涂覆防腐蚀尼龙层的铝箔袋软包装组装了1V、70F的超级电容器,外形尺寸为35mm×43mm×6mm。测试结果表明其比功率密度为170W/kg或330W/L,比能量密度1W h/kg,大功率放电特性较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号