首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphorus deficiency is one of the major constraints for normal plant growth and crop yields in the acid soils of Ghana and therefore addition of P inputs is required for sustainable crop production. This is often difficult, if not impossible for small-scale farmers due to the high cost of mineral P fertilizers and limited access to fertilizer supplies. Direct application of finely ground phosphate rocks (PRs) and their modified forms have been recommended as alternatives for P fertilization. The direct application of the natural and modified PRs to these acid soils implies the need to predict their agronomic effectiveness of the PRs in the simplest and most cost-effective manner. In this study the classical greenhouse pot experiment was compared to the 32P isotopic kinetics laboratory method for evaluating the agronomic effectiveness of natural and modified Togo PR in six highly weathered Oxisols from southwest Ghana. In the 32P isotopic kinetics laboratory experiment the six soil samples were each fertilised at the rate of 50 mg P kg–1 soil in the form of triple superphosphate (TSP), Togo PAPR-50%, and Togo PR, respectively. Controls without P amendment were also included. Isotopic exchange kinetics experiments were carried out on two sets of samples, immediately after P fertilizer additions (without incubation) and after 6 weeks of incubation under wet conditions and at a room temperature of 25 °C. In the greenhouse pot experiment, P fertilizers in the form of Togo PR, Togo PAPR, Mali PR and TSP were each applied to the six soils at rates equivalent to 0, 30, 60, and 120 kg P ha–1, respectively. The P fertilizers were mixed with the soils and maize (Zea mays L.) variety Obatanpa was grown for 42 days before harvest. The isotopic kinetics data of the control samples indicated that 5 of the studied soils had very low P fertility status as reflected by their low P concentrations in solution (CP<0.02 mg P l–1) and low exchangeable P (E1min < 5 mg P kg–1). The capacity factor and the fixation index of the soils were variable. Application of water-soluble P as TSP increased both the CP and E1 values of all the soils above the critical levels. Togo PR was least effective among the fertilizers tested for all soil soils, except in Boi soil. Acidulation of Togo PR (Togo PAPR-50%) was an effective means to increase its agronomic effectiveness. Direct application of natural Togo PR would be only feasible in the Boi soil series as reflected by its high Pdff% value in soil solution. Incubation with the P fertilizers caused an increase in the soil pH and a decline in the effectiveness of the applied P fertilizers, irrespective of the soil and the fertilizer utilized. Based upon the results of the greenhouse pot experiment, the relative crop response index (RCRI) in terms of increasing dry matter yield and P uptake followed the order of TSP > PAPR = Mali PR >Togo PR = Control. Both the laboratory index, Pdff% in soil solution derived from the isotopic method and the RCRI values obtained from the pot experiment produced similar results in ranking the P fertilizers tested according to their agronomic effectiveness. The isotopic kinetic method may be considered as an alternative to both greenhouse and field methods in the evaluation of agronomic effectiveness of P fertilizers in tropical acid soils when it offers comparative advantages in assessing the soil P status and its changes. But trained staff and adequate laboratory facilities are needed to perform this technique. Also the method can be used as a reference for comparison purposes as in this case. Further research is needed to assess the overall agronomic effectiveness (immediate and residual effects) of PR sources in predominant cropping systems of this region of Ghana.  相似文献   

2.
The agronomic effectiveness of two natural phosphate rocks (PRs) from North Carolina (USA) and Togo and their 50% partially acidulated products (PAPRs) was evaluated in two greenhouse experiments using32P isotopic dilution techniques, namely L and AL values.In the first experiment rye grass was grown in a soil from Ghana. While the proportion of P in the plant derived from the P fertilizer (Pdff) ranged on. the average from about 10% for the PRs up to 80% for the PAPRs, the P fertilizer recovery was less than 1% for a 60-day growth period. In the second experiment, average values of P in the maize plants derived from the PAPRs ranged from 35% to 75% in 3 different soils. Both PRs were ineffective with the exception of North Carolina PR in the Seibersdorf soil. The P fertilizer recovery was 0.25% for the North Carolina PR in this soil whereas the recovery values ranged from 1.2% to 1.6% for the PAPRs.Mean values of the relative fertilizer efficiency estimated from the L values of each soil were less than 1% for the PRs whereas the values for the PAPRs which were dependent on soil type ranged from 20% up to 45%. The coefficient of relative effect of partial acidulation, that was calculated from the ratio of AL values for PR and PAPR in each soil indicated that partial acidulation increased the effectiveness of the natural PRs in all soils under study.This study showed that the use of32P isotope dilution techniques allows an accurate measurement of the P availability from natural and modified PR products to crops. Another advantage is that quantitative comparison of the P sources under study, PRs and PAPRs in this case, can be made even in soils where there is no response to the applied P sources.  相似文献   

3.
The agronomic effectiveness of three P fertilizers (diamonium phosphate, rock phosphate and compost) was studied in a greenhouse experiment using wheat. A radioisotopic method, using triple superphosphate labelled with32P, was used to evaluate the P in dried tops that was derived from i) the soil, ii) labelled superphosphate and iii) the fertilizer being studied.The ratio between P uptake from each fertilizer and P uptake from the soil was used to compare the effectiveness of the different fertilizers. P derived from diammonium phosphate was greater than P derived from the soil, except in one soil. P derived from rock phosphate was always lower than P derived from the soil. The effectiveness of compost depended on soil type. Compost can produce two kind of effects: i) a direct P contribution and ii) an indirect effect improving P uptake from the soil. The radioisotopic method can be used to study the effectiveness of fertilizers even when there are no differences in yield.  相似文献   

4.
Phosphorus (P) is needed in large areas of developing countries toimprove soil fertility for crop production. The use of phosphate rock (PR) isan alternative to costly soluble P fertilizers, but it is ineffective usuallyin non-acid soils unless it is modified i.e. partially acidulated (PAPR). Alaboratory incubation study using the isotopic exchange kinetic method of32P and field experiments were undertaken on a neutral Ferralsol ofCuba to evaluate the effectiveness of PAPRs as fertilizers for common bean(Phaseolus vulgaris, L.). Sulfuric-acid based PAPR using40%, 50% and 60% of the acid required to produce singlesuperphosphate were studied. In the laboratory experiment Trinidad de GuedesPAPR was effective in providing P to the soil, through increases inisotopicallyexchangeable P and the percentage of P derived from fertilizer (%Pdff). In the three field experiments carried out to compare the P sources,yields of common bean were increased by PAPR, though the response was less thanwith triple superphosphate (TSP). The relative agronomic effectiveness (RAE) ofPAPR was greater than that of unacidulated PR. Taking into account the RAEvalues and the current cost of the P sources, the choice of Trinidad de GuedesPAPR instead of TSP could be economic, although the RAE value for PAPR waslowerthan that of TSP. This result indicates that PAPR could be used in thesoil understudy to obtain the best economic return. DM yield, P uptake and grain yield ofcommon bean were significantly increased by applying P as 50% PAPR. Lowcost improvement of the agronomic value of PR can be achieved by partialacidulation, so this modification of the phosphate rock show promise forutilization of PR reserves indigenous to developing countries.  相似文献   

5.
Tropical soils are often low in available P and therefore require inputs of P fertilizer for optimum plant growth and production of food and fiber. The cost of applying imported or locally produced, water-soluble, P fertilizers is often greater than utilizing indigenous phosphate rock. Therefore quantifying the P availability of soils amended with phosphate rock-based products in a variety of crop management and environmental conditions in developing countries is desirable for making recommendations on best type and rate of fertilizers to use to obtain maximum agronomic and economic benefits. One adequate approach for evaluating the agronomic effectiveness of rock phosphate materials is through the use of32P/33P isotopic tracers. The present paper describes the principles and assumptions of the32P isotopic techniques commonly used in the field and greenhouse for the agronomic evaluation of rock phosphate materials. An overview of the applications of these techniques is also given.  相似文献   

6.
A laboratory method and a laboratory index is proposed to estimate the phosphorus taken up by plants that is derived from fertilizers (Pdff). Pdff values were measured using greenhouse experiments and32P labelling technics. The laboratory index estimates the proportion of PO4-ions derived from the fertilizer in the soil solution and is measured by means of an isotopic exchange of32PO4-ion procedure. This indicator was named JCF. Two typical soil-fertilizer conditions were studied. One concerned measurement of Pdff and JCF values for freshly-applied phosphorus as diammonium phosphate (DAP) at levels of 15, 30, 45, 60 and 90 mg P kg–1 soil. The other concerned measures of Pdff and JCF values for two types of P residues previously applied in soils as concentrated superphosphate (CSP) or Gafsa rock phosphate (GRP) applied at 0 and 43.7 kg.ha–1 each year over a 15 yr period.For freshly-applied DAP a linear relationship between Pdff and JCF values was obtained over the range of 0 to 90 mg P (kg soil)–1 levels of application: JCF = 1.16 Pdff + 1.78, (r 2 = 0.98). For the P residues, JCF and Pdff values were not significantly different for a given residual treatment. However JCF and Pdff pair data for CSP treatments (56.0, 65.9) were about tenfold superior to those for GRP treatments (5.3, 4.6)). Consequently the nearly 1:1 ratio between JCF and Pdff values that was obtained for the two different soil-fertilizer conditions suggests that the proposed laboratory method can be used to predict availability of P fertilizers to plants. Thus it deserves to be considered in helping to estimate P fertilizer applications.  相似文献   

7.
A greenhouse study was conducted to determine if soil pH affects the requirement for water-soluble P and the tolerance of water-insoluble impurities in TSP fertilizers. Two commercial TSP fertilizers were selected to represent a range in phosphate rock sources and impurities. Phosphate fertilizer impurities were isolated as the water-washed fraction by washing whole fertilizers with deionized water. TSP fertilizers with various quantities of water-soluble P (1.2 to 99% water-soluble P) were simulated by mixing the water-washed fertilizer fractions or dicalcium phosphate (DCP) with reagent-grade monocalcium phosphate (MCP). The fertilizers were applied to supply 40 mg AOAC available P kg–1 to a Mountview silt loam (fine-silty, siliceous, thermic Typic Paleudults). Wheat (Triticum aestivum (L.)) was harvested at 49 and 84 days after planting. Soil pH values at the final forage harvest were 5.4±0.16 and 6.4±0.15. At a soil pH of 5.4, the TSP fertilizers required only 37% water-soluble P to reach maximum yields while at pH 6.4 the fertilizers required 63% water-soluble P. Results of this study show that higher levels of water -insoluble P can be tolerated in TSP fertilizers when applied to acid soils. Phosphorus uptake was not affected by soil pH, but for the mixtures containing the fertilizer residues the source having the lowest level of Fe and Al had a higher relative agronomic effectiveness.  相似文献   

8.
Soil phosphorus (P) deficiency is a major factor limiting crop productivity in many tropical and subtropical soils. Due to the acidic nature of these soils, rock phosphate (RP)-based P fertilizers that are cheaper than manufactured water-soluble P fertilizers can be an attractive alternative under certain conditions. Assessment of the efficacy of these alternative P fertilizers and a rational management of local P resources for sustainable agricultural production require an understanding of the dynamics of P in the soil–plant system and the interactions of various P sources in soils and monitoring of soil available P levels. The present work was conducted to test the applicability of the 32P isotopic kinetic method to assess the soil P fertility status and evaluate the agronomic effectiveness of local rock phosphates in subtropical China. A series of experiments was carried out in the laboratory, greenhouse and field conditions with the following specific objectives: (a) to evaluate the suitability of this isotopic kinetic method in evaluating soil P fertility in 32 soil samples collected across southern China, (b) to test and further develop chemical extraction methods for routine soil P testing, (c) to monitor the dissolution kinetics of local low to medium grade rock phosphate sources and their effect on soil properties and (d) to evaluate their agronomic effectiveness in greenhouse and field experiments. Since most of the studied soils had very low concentrations of soluble P and high P-fixing capacities, the isotopic kinetic method was found unsuitable for evaluating soil P fertility and to predict plant P uptake. In contrast, the proposed chemical extraction method (NaHCO3-NH4F) predicted very well plant P uptake, suggesting that this extraction method can be routinely used to evaluate soil bioavailable P in similar soils in subtropical China. From the incubation study, it was found that although the local low to medium grade RPs were inferior to the reactive NCPR in increasing soil available P levels, they have the potential to improve soil chemical properties. Field experiments indeed demonstrated that the medium grade Jinxiang RP significantly increased crop yield, suggesting that local low to medium grade RPs could be used as P sources to provide P to plants and also to improve soil chemical properties. Overall, these results provide important information for a rational management of P resources for sustainable agriculture in subtropical China.  相似文献   

9.
The agronomic effectiveness of P fertilizers, as sources of phosphorus for crops, was evaluated using the quantities, Pf, of phosphorus taken up byLolium perenne grown on 14 soils during greenhouse experiments in pot cultures. The Pf quantities were determined using32P-labelled fertilizers. Data were analysed using a new concept: the Isotopic Relative Agronomic Effectiveness (IRAE). The IRAE value was defined as the ratio of the Pf quantity, taken up by a crop, of a tested fertilizer over the Pf quantity, taken up by a crop, of a fertilizer used as standard. In our experiments diammonium phosphate (DAP) was used as standard P fertilizer and two rock phosphates, the North Carolina rock phosphate (NCPR) and a calcium-iron-aluminium phosphate (Phospal), were tested. As a linear relationship between Pf(NCPR) quantities and Pf(DAP) quantities was obtained, with r2 = 0.95, when the application rates increased from 15 mgP (kg soil)–1 to 200 mgP (kg soil)–1, it is conciuded that IRAE values for a given fertilizer, other than the standard fertilizer, could be determined with a single rate of application. As regards soil pH in the range 4.7 to 8.2 the IRAENCPR is related to soil pH by a curvilinear relationship: log IRAENCPR = –(0.44) pH + 4.05 with r2 = 0.89. The average of IRAEphospal values was 0.15 with a standard error = 7% irrespective of soil pH. Then a logarithmic relationship was obtained between IRAE values of the two tested fertilizers and their water P-solubility determined at the soil pH where they were applied.  相似文献   

10.
Data from 194 published pot and field experiments were used to calculate the fertilizer effectiveness of two commercially available calcined iron-aluminium rock phosphate fertilizers— Calciphos and Phospal. A very wide range of effectiveness values (RE) relative to superphosphate have been reported for freshly applied fertilizers ( < 0.1 to 3.0). These differences are primarily not due to differences in citrate soluble P, soil pH, plant species and mean annual rainfall. For both fertilizers most of the variation in published values is due to the use of poorly responsive soils and to incorrect methods of fertilizer assessment. Lower RE values (< 0.1 to 0.5) were derived for experiments on highly P responsive soils and when several levels of P were applied to provide complete response curves. For these experiments high RE values (about 1.0) for Calciphos only occurred for sandy soils in which water-soluble P was rapidly leached. The residual value of Calciphos and Phospal remained low relative to freshly applied superphosphate.  相似文献   

11.
12.
The effectiveness in the year of application of three phosphorus fertilizers, superphosphate, Christmas Island C-grade ore, and 500°C calcined Christmas Island C-grade ore (Calciphos), was measured for 5 consecutive years in a field experiment on a lateritic soil. The residual value of the phosphorus fertilizers was also measured for 6 years. Dry matter production of subterranean clover-based pasture and bicarbonate extractable soil phosphorus were used as indicators of fertilizer effectiveness.Despite the use of very large amounts of C-grade ore and Calciphos, the plateau of the pasture yield versus fertilizer applied curve for these fertilizers did not reach the yield plateau achieved with superphosphate in either the short or long term.C-grade ore and Calciphos were 3% and 8% as effective as superphosphate for dry matter production in the year of application. Relative to superphosphate applied in the current year the effectiveness of superphosphate decreased by about 70% between the first and second year after application and decreased by a further 14% from year 3 to year 6. C-grade ore and Calciphos remained about 2% and 9% as effective as currently applied superphosphate each year.The residual value of superphosphate as measured by bicarbonate-extracted soil phosphorus decreased by about 60% from year 2 to year 7. The residual value of Calciphos was very low for year 2, doubled from year 2–4 and thereafter decreased gradually to its original value by year 7. The residual value of C-grade ore was extremely low throughout the experiment. Thus after year 2, compared to pasture yield, bicarbonate extracted soil phosphorus overestimated the residual value of superphosphate and calciphos.It follows that neither C-grade ore or Calciphos are suitable replacement fertilizers for superphosphate for use on pastures growing on lateritic soils in south-western Australia.  相似文献   

13.
The agronomic effectiveness of two partially acidulated rock phosphate (PARP) fertilizers, made from either North Carolina or Moroccan apatite rock phosphate, and a fused calcium-magnesium phosphate (thermal phosphate or TP), was compared with the effectiveness of superphosphate in two glasshouse experiments. A different lateritic soil from Western Australia was used for each experiment. Oats (Avena sativa) were grown in one experiment and triticale (×Triticosecale) in the other. Fertilizer effectiveness was measured using (i) yield of dried tops, (ii) P content (P concentration in tissue multiplied by yield) of dried tops, and (iii) bicarbonate-extractable soil P (soil test value).The following relationships differed for the different fertilizers: (i) yield of dried tops and P content in the dried tops; (ii) yield and soil test values. Consequently the fertilizer effectiveness values calculated using yield data differed from those calculated using P content or soil test data. Freshly-applied superphosphate was always the most effective fertilizer regardless of the method used to calculate fertilizer effectiveness values. For one of the soils, as calculated using yield data, relative to freshly-applied superphosphate, the PARP and TP fertilizers were 15 to 30% as effective for the first crop, and 20 to 50% as effective for the second crop. The second soil was more acidic, and for the first crop the PARP and TP fertilizers were 80 to 90% as effective as freshly-applied superphosphate, but all fertilizers were only 5 to 15% as effective for the second crop. For each soil, the two PARP fertilizers had similar fertilizer effectiveness values. Generally the TP fertilizer was more effective than the PARP fertilizers.  相似文献   

14.
The initial and residual fertilizer effectiveness of North Carolina RP (rock phosphate), monocalcium phosphate and partially acidulated RP (made from North Carolina RP at 30% acidulation), both granulated and non-granulated, were measured in a glasshouse experiment. Triticale (xTriticosecale) was grown for 30 days on a soil that had been adjusted to three pH values (4.2, 5.2 and 6.2). Two crops were grown with a six month interval between crops. The effectiveness of the different fertilizers was compared using relationships between (1) yield of dried tops and the amount of P applied and (2) P content (P concentration in tissue multiplied by yield) and the amount of P applied. For the first crop, relative effectiveness (RE) of the fertilizers was calculated relative to granulated monocalcium phosphate, the most effective fertilizer. Monocalcium phosphate was not applied to the second crop, so relative residual effectiveness (RRE) was estimated for each fertilizer relative to the residual effectiveness of granulated monocalcium phosphate.The relative effectiveness of granulated monocalcium phosphate (band application) was greater (RE = 1.00) than of North Carolina RP (0.01–0.02) and partially acidulated RP (0.45–0.76) for all three soil pH values for the first crop. Granulation and band application increased the effectiveness of monocalcium phosphate and partially acidulated RP, but reduced the effectiveness of North Carolina RP. Both non-granulated monocalcium phosphate and partially acidulated RP were less effective than granulated partially acidulated RP for both crops. For the second crop granulated monocalcium phosphate was most effective and the RRE of non-granulated partially acidulated RP (0.16–0.32) and North Carolina RP (0.19–0.28) was greater than for non-granulated monocalcium phosphate (0.12). For the more acidic soil the RE of non-granulated North Carolina RP was four times higher than for the high pH soil for the first crop and 60% higher for the second crop, but it was still poorly effective relative to granulated monocalcium phosphate. Granulated North Carolina RP was least effective among all the fertilizers for all soil pH values and for both crops.  相似文献   

15.
The effect of incubation on the fate of phosphorus in four phosphatic fertilizers (diammonium phosphate and three rock phosphates) applied to four weakly acid to acid soils was studied. Percent utilisation of fertilizer P by the crop was measured by isotopic labelling and the level and quality of available soil P following addition of fertilizer was measured by the isotopic dilution kinetics method. Percent utilisation of fertilizer P decreased as time of contact between fertilizer and soil increased. The quantity of available soil P increased immediately after applying fertilizer but then decreased. The efficiency of P from rock phosphate was not increased by application long before sowing the crop. From practical viewpoint it is important to apply P fertilizer as near as possible to the time of planting in order to reduce the negative effects of P fixation by the soil.  相似文献   

16.
Relationships between plant response and rates of dissolution of ground (< 150µm) North Carolina phosphate rock (NCPR), NCPR 30% acidulated with phosphoric acid (NCPAPR) and monocalcium phosphate (MCP) were assessed in pot experiments. The three fertilizers were incubated for 1, 50 and 111 days, at the rates of 75, 150 and 750µg P g–1 soil, using two soils with different P-retention capacity. After each period of incubation, four pots were set up from each treatment, and perennial ryegrass (Lolium perenne) was grown in a growth chamber for about six weeks to assess the agronomic effectiveness of the fertilizers. Results in dry matter yield and P uptake showed that immediately following application (1 day incubation), the MCP (solution) was supplying more P to plants than either the NCPR or the NCPAPR applied at the same rate. After 50 and 111 days of incubation, the NCPR and NCPAPR were just as effective in the lower P-retention Tekapo soil. The relative agronomic effectiveness (RAE) of the NCPR and NCPAPR compared with MCP was generally poorer in the higher P-retention Craigieburn soil than in the Tekapo soil shortly after application, but improved with time of incubation. Ryegrass responses to the application of the three fertilizers corresponded to the changing trends of exchangeable P in the soils, measured by the isotopic method.Regressions were made between plant P uptake and indices describing the intensity factor (water extractable P), quantity factor (Bray I P, Olsen P, 0.5M NaOH extractable P and isotopic exchangeable P) and the kinetic factor (Fin) of soil P supply to plants in the Tekapo soil. The percentage of variation in plant P uptake explained by individual indices was generally less than 80%, no matter which of the three single variable models, the Mitscherlich, the quadratic or the power function was fitted. However, more than 96% of the variation in plant P uptake in the Tekapo soil could be explained by the power function models involving two variables. The rate of P dissolution (Fin) determined by the isotopic dilution method was included in all the two variable models. The results suggest that assessment of soil P supply to plants should consider the kinetic factor in addition to the intensity and quantity factors, particularly where P fertilizers with differing solubility are applied.  相似文献   

17.
Three different parameters of the long term effects of phosphate fertilizers on perennial clover-based pastures were measured over 3–4 years in 27 experiments on acidic soils in an elevated region of eastern Australia. Recovery of fertilizer P was the difference between herbage P uptake in the presence of fertilizer and uptake in its absence, expressed as a % of the amount of P applied in the first year. Residual value was the size of the response to fertilizer P, applied in the first year, expressed as a percentage of the response to freshly applied P in the second and third years. Effectiveness was the product of the values of the Mitscherlich curvature and response parameters for each response curve, and residual effectiveness was relative to initial effectiveness. Soils varied widely in their P sorptivities, and represented Alfisols, Entisols, and Ultisols of basaltic, granitic and sedimentary origin. Mean P recoveries of 29% in the first year and 49% over 3 years, residual values of 84% in the second year and 60% in the third, and residual effectiveness of 77% in the second year and 47% in the third were high by most standards. Increasing P sorptivity tended to increase fertilizer effectiveness in the first year and residual value in the second year, but it depressed P recovery in the first year and residual effectiveness in later years. The long term effect of increasing P sorptivity on cumulative P recoveries tended to be negative at low to medium rates of fertilizer application and positive at high rates of application. There was a much smaller decline in residual values and effectiveness over the 3 or 4 years than there was in P recovery, and this was attributed to the beneficial effects of P on soil N fertility, via clover N fixation, and the subsequent growth of grasses in the phosphated treatments.  相似文献   

18.
Initial and residual effects of nitrogen (N) fertilizers on grain yield of a maize/bean intercrop grown on a deep, well-drained Humic Nitosol (66% clay, 3% organic carbon) were evaluated. Enriched (15N) N fertilizer was used to study the fate of applied N in two seasons: using urea (banded) at 50 kg N ha–1 in one season, and15N-enriched urea (banded), calcium ammonium nitrate (CAN, banded), and urea supergranules (USG, point placement) were applied in the other season (different field) at 100 kg N ha–1. Nitrogen fertilizer significantly (P = 0.05) increased equivalent maize grain yield in each season of application with no significant differences between N sources, i.e., urea, CAN, and USG. Profitmaximizing rates ranged from 75 to 97 kg N ha–1 and value: cost ratios ranged from 3.0 to 4.8. Urea gave the highest value: cost ratio in each season. Most (lowest measurement 81%) of the applied N was accounted for by analyzing the soil (to 150 cm depth) and plant material. Measurements for urea, CAN, and USG were not significantly different. The high N measurements suggest low losses of applied N fertilizer under the conditions of the study. Maize plant recovery ranged from 35 to 55%; most of this N (51–65%) was in the grain. Bean plant recovery ranged from 8 to 20%. About 34–43% of the applied N fertilizer remained in the soil, and most of it (about 70%) was within the top soil layer (0–30 cm). However, there were no significant equivalent maize grain increases in seasons following N application indicating no beneficial residual effect of the applied fertilizers.  相似文献   

19.
The agronomic effectiveness of superphosphate and two rock phosphates that had been applied once only to the soil surface 8 to 12 years previously was measured in a field experiment with oats on a lateritic soil in south-western Australia. The soil was either undisturbed or cultivated with a rotary hoe before sowing. The rock phosphates were Christmas Island C-grade ore (C-ore, a calcium ironaluminium rock phosphate), and C-ore calcined (heated) at about 500°C (Calciphos).Cultivation reduced the effectiveness for all three fertilizers by 20 to 50%. The effectiveness of phosphorus (P) applied as superphosphate decreased with increasing period from time of application whereas the effectiveness of the rock phosphates increased but they were always much less effective than superphosphate.The relationship between grain yield and P concentration of plant tissue (i.e. the internal efficiency of P use curve) was similar regardless of fertilizer type, year of application of fertilizer, and whether or not the soil was cultivated. Thus differences in fertilizer residual effectiveness were solely due to the amount of P taken up by the plants.Values of bicarbonate-soluble P (i.e. soil test for P values) for superphosphate treated soil were reduced by about 20 to 25% when the fertilizer was incorporated into the soil whereas for the rock phosphate treated soils the values were little affected by cultivation. The relationship between yield and soil test for P values varied depending on cultivation treatment and fertilizer.We conclude that cultivation decreases the effectiveness of residual fertilizer P and that cultivation and fertilizer type influence the accuracy of yield prediction from soil test values.  相似文献   

20.
The agronomic potential of four partially acidulated rock phosphates (PARP) made from a moderate reactive phosphate rock at 30 or 60 percent acidulation either by sulfuric acid alone or by combination of sulfuric and phosphoric acids was compared with that of monocalcium phosphate (MCP) and ground rock phosphate (RP) on a calcareous soil (Typic Hapluquent, pH 8.5) in greenhouse. Dry weight and P accumulation of successive cuttings of ryegrass shoots were used to evaluate the relative agronomic potential of these fertilizers. Results indicated that PARPs of higher water-soluble P content had similar immediate effectiveness as MCP at two earlier cuttings, however, they produced significantly less total dry matter than MCP did in overall six successive cuttings. PARPs were constantly inferior to MCP in terms of P uptake by plant in all the six cuttings. When compared to RP, on the other hand, PARPs had markedly higher relative effectiveness. RP itself affected neither the dry matter production nor the P uptake by plant as compared to control treatment.Fractionation of residual inorganic P in the soil samples at two time intervals during plant growth indicated that MCP-P mainly transformed to dicalcium phosphate and octacalcium phosphate, and to a less extent to Fe and Al associated P. These forms of P had significant correlation with P accumulation by plant. Raw RP did not subject to transformation after applied to the soil regardless the duration of culture time. No obvious dissolution of unreacted RP in PARP materials was detected. Plant dry matter production and P uptake were mainly correlated with water-soluble P added with the fertilizers. It is suggested from the experiment that although partial acidulation could substantially improved the effectiveness of rock phosphate and the immediate effect of the fertilizer was competitive with MCP, application of PARP to calcareous soils is only of short-term benefits; in a long run this fertilizer is not considered as a desirable source of P in calcareous soils since the unacidulated part in the fertilizer was unable to be solubilized in the alkaline conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号