首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对压电陶瓷驱动电源的应用设计了一种基于单片机(MCU)控制的高压开关电源,实现了低压(9~18 V)输入下的高压(150 V)输出。电路主回路采用准谐振反激变换拓扑结构,MCU芯片控制脉宽调制(PWM)电源管理芯片完成变换器升压,并驱动H桥逆变电路输出频率可调的方波电压。数字控制的高压开关电源工作波形稳定,尖峰噪声小,输出电压精度高。实验结果验证了高压开关电源的性能。  相似文献   

2.
A buck pulsewidth modulated zero-current switching quasi-resonant converter (buck PWM ZCS QRC) operating at constant frequency is discussed. Operating principle and design-oriented analysis are presented with normalized design curves, design procedure, design example, simulations, and experimental results. The new topology, which can be considered as a particular one, is compared with the well-established buck frequency-modulated zero-current switching quasi-resonant converter (buck FM ZCS QRC) proposed by Fred C. Lee (1988)  相似文献   

3.
Experimental results are presented for buck and flyback zero-voltage-switched (ZVS) quasi-resonant converters (QRCs) operating above 5 MHz. A design procedure for a buck ZVS QRC is proposed that minimizes voltage stress to the power MOSFET transistor while maintaining zero voltage switching for specified ranges of input voltage and load resistance. A quasi-resonant gate drive scheme is also proposed and implemented in a buck converter. The drive is simple and provides high switching speed. Power dissipation in the gate drive is substantially reduced due to the quasi-resonant operation. The ZVS QRC technique described is suitable for very-high-frequency operation due to its ability to reduce dynamic turn-on losses, Miller effect, dv/dt, and di//dt and can be applied in distributed onboard power supplies  相似文献   

4.
The asymmetrical half-bridge (AHB) topology discussed in this paper is one of the complementary driven pulse-width modulated converter topologies, which presents an inherent zero-voltage switching (ZVS) capability. In the previous work, the ideal operation of the converter and the ZVS realization process have been analyzed. However, the influence of the circuit parasitics on the output voltage drop and the design constraints of the circuit parameters to ensure the ZVS operation have not been investigated. The minimum load needed to ensure the ZVS operation is also not readily available. This paper presents a detailed and practical design for a 1-MHz AHB converter. A revised voltage transfer ratio of the converter is derived considering the influence of circuit parasitics and the ZVS transition. Two circuit parameters responsible for maintaining the ZVS operation are the transformer leakage inductance and the interlock delay time between the gate signals of two switches. A design method of the two parameters is proposed, which can ensure the ZVS transition. The possible ZVS range of the load variation is also investigated. A 50-W AHB converter with 1-MHz switching frequency was constructed, and a maximum efficiency of 91% was achieved.  相似文献   

5.
Low-voltage-swing monolithic dc-dc conversion   总被引:1,自引:0,他引:1  
A low-voltage-swing MOSFET gate drive technique is proposed in this paper for enhancing the efficiency characteristics of high-frequency-switching dc-dc converters. The parasitic power dissipation of a dc-dc converter is reduced by lowering the voltage swing of the power transistor gate drivers. A comprehensive circuit model of the parasitic impedances of a monolithic buck converter is presented. Closed-form expressions for the total power dissipation of a low-swing buck converter are proposed. The effect of reducing the MOSFET gate voltage swings is explored with the proposed circuit model. A range of design parameters is evaluated, permitting the development of a design space for full integration of active and passive devices of a low-swing buck converter on the same die, for a target CMOS technology. The optimum gate voltage swing of a power MOSFET that maximizes efficiency is lower than a standard full voltage swing. An efficiency of 88% at a switching frequency of 102 MHz is achieved for a voltage conversion from 1.8 to 0.9 V with a low-swing dc-dc converter based on a 0.18-/spl mu/m CMOS technology. The power dissipation of a low-swing dc-dc converter is reduced by 27.9% as compared to a standard full-swing dc-dc converter.  相似文献   

6.
Reference/modulating waveform continuity is not a necessary condition for the implementation of switching patterns for three-phase pulse-width modulated (PWM) converters if the load or the source are Y-connected. This is based on the fact that the converter phase-voltages do not need to be sinusoidal and switching pattern discontinuities-“dead-bands”-do not degrade the quality of output/input voltage/current waveforms by introducing low-order harmonics if certain parameters are optimized. This paper discusses general characteristics of various discontinuous switching patterns for PWM converters and shows that they can yield better performance than their continuous counterparts in some operating regions. Performance is defined as harmonic distortion normalized with respect to effective switching frequency and serves as a measure of comparison with continuous PWM techniques, The applications considered include general purpose and application specific solid-state power supplies using voltage source inverters and PWM rectifiers. Theoretical considerations are verified on an experimental unit  相似文献   

7.
Equivalent circuit models for resonant and PWM switches   总被引:4,自引:0,他引:4  
The nonlinear switching mechanism in pulsewidth-modulated (PWM) and quasi-resonant converters is that of a three-terminal switching device which consists only of an active and a passive switch. An equivalent circuit model of this switching device describing the perturbations in the average terminal voltages and current is obtained. Through the use of this circuit model the analysis of pulsewidth modulated and quasiresonant converters becomes analogous to transistor circuit analysis where the transistor is replaced by its equivalent circuit model. The conversion ratio characteristics of various resonant converters and their relationship to a single function, called the quasi-resonant function, is easily obtained using the circuit model for the three-terminal switching device. The small-signal response of quasi-resonant converters to perturbations in the switching frequency and input voltage is determined by replacing the three-terminal switching device by its small-signal equivalent circuit model  相似文献   

8.
An isolated ac-dc converter topology includes a capacitively snubbered voltage source converter (VSC) and a cycloconverter, coupled by a medium frequency transformer. The topology offers the possibility of bilateral power flow as well as three-level pulse width modulation on the ac side. It is shown that by alternately commutating the VSC and the cycloconverter it is possible to achieve either zero-voltage or zero-current switching conditions for all semiconductor devices in all points of operation. This is the case without any need for auxiliary semiconductor devices. At low load the transformer current may be insufficient for recharging the VSC snubber capacitors. In this case, however, it is possible to utilize the cycloconverter for providing a current path by which a quasi-resonant commutation can be made. The design and operation of a 40-kVA prototype converter system is described. It is shown how the rather complex switching logic required for implementing the chosen algorithm for commutation and modulation can be realized by using modern programmable logic devices [field programmable gate array (FPGA)]. Measurement results from the prototype converter are presented and analyzed. The measurements indicate that the studied commutation algorithm works well in practice  相似文献   

9.
A novel zero voltage switching (ZVS) dual bridge dc/dc converter is presented. The proposed converter is composed of two dual-transistor-forward converter, coupled with a single high frequency transformer. ZVS is realized by introducing a proper leakage inductance to the secondary of the high frequency isolation transformer with a corporation of a designed pulse-width modulation control. Operation principle and ZVS condition of the proposed converter are analyzed. Experimental results obtained from a 3.2-kW prototype are given. Extensions of the proposed converter topologies and experimental results of one extension converter are presented.  相似文献   

10.
In this paper, a series resonant converter with pulse-width modulation (PWM) control is presented as an ac voltage regulator module (VRM) for high frequency ac power distribution systems. The proposed topology has close-to-unity rated power factor, low total harmonic distortion in input current, zero voltage switching under all load conditions, low voltage stress of the active switch and high overall efficiency. Simulation and experimental results are presented to prove the performance of the proposed ac VRM converter.  相似文献   

11.
Constant-frequency control of quasi-resonant converters   总被引:1,自引:0,他引:1  
An additional independent control needed to eliminate the undesirable variable switching frequency of quasi-resonant (QR) converters is obtained by replacing the output rectifier by an active switch. The concept is applicable to all classes of converters. Compared to QR converters with conventional switch realization, constant-frequency quasi-resonant (CF-QR) converters exhibit the same type of switching transitions and similar switch voltage and current stresses. Advantages of CF-QR converters are not restricted to the constant-frequency control. In all classes, operation at zero load is possible, so that the available load range is unlimited. The range of attainable, conversion ratios is significantly extended in the classes of zero-voltage quasi-square-wave (CF-ZV-QSW) and zero-voltage multiresonant (CF-ZV-MR) topologies. A practical design example of a 25 W CF-ZV-MR buck converter is constructed and evaluated. The converter operates at 2 MHz from zero load to full load, with a full-load efficiency of 83%. Simple duty ratio control is used to maintain the output voltage constant for all loads. The circuit is inherently immune to the short-circuit condition at the output. Disadvantages of CF-QR converters are the increased gate-drive losses and increased complexity of the power stage and the control circuitry  相似文献   

12.
集成双层平面电感的单片DC/DC转换器设计   总被引:1,自引:0,他引:1       下载免费PDF全文
李清华  邵志标  张春茗  耿莉   《电子器件》2007,30(2):487-490
采用0.35μm标准CMOS工艺设计了3.3V/1.5V单片低压Buck转换器,开关频率为150MHz.本文采用了电压型脉宽调制的反馈控制模式,克服了频率提高所带来的转换器系统不稳定问题.对双层平面螺旋电感进行了设计与优化,获得品质因数2.6,电感值28nH的双层平面电感.模拟结果表明,对应于不同输入电压或不同负载,转换器系统工作稳定,输入调整率-40dB,输出调整率-60dB.输出电压纹波平均值可以控制在额定值75mV,转换效率71%.  相似文献   

13.
Control characteristics and power losses of magnetic amplifier used as a pulse-width modulator are discussed for a typical forward converter driven high-frequency switching. The control region of the magnetic amplifier is analyzed by modeling the DC magnetizing characteristics of the core and the reverse recovery of the diode in the converter circuit, and the dynamic characteristics of the regulated converter are examined analytically. The iron loss and switching loss of the magnetic amplifier are derived as functions of the switching frequency and the load current, with five states of the magnetic amplifier taken into consideration  相似文献   

14.
This paper reports on the first demonstration of a half-bridge power inverter constructed from silicon carbide gate turn-off thyristors (GTOs) operated in the conventional GTO mode. This circuit was characterized with input bus voltages of up to 600 VDC and 2 A (peak current density of 540 A/cm2) with resistive loads using a pulse-width modulated switching frequency of 2 kHz. We discuss the implications of the thyristor's electrical characteristics and the circuit topology on the overall operation of the half-bridge circuit. This work has determined the conservative critical rate of rise value of the off-state voltage to be 200 V/μs in these devices  相似文献   

15.
提出了一种输出电流可达750mA,脉宽调制(PWM)和变频调制(PFM)双模式控制的,高效率、高稳定性直流-直流降压转换器.该转换器在负载电流大于80mA时,采用开关频率为1MHz的PWM工作模式;在负载电流小于80mA时,采用开关频率减小和静态电流降低的PFM工作模式,实现了在整个负载电流变化范围(0.02~750mA)内,转换器均保持高效率.而且采用一种快速响应的电压模式控制结构,达到了优异的线性和负载调整特性.芯片采用CSMC公司0.5μm CMOS 2P3M混合信号工艺物理实现.测试结果表明,该电路可根据负载的变化在PWM和PFM模式下自动切换.最大转换效率达96.5%;当负载电流为0.02mA时,转换效率大于55%.该芯片特别适合电池供电的移动系统使用.  相似文献   

16.
This article presents a new dc/dc converter to perform the main functions of zero voltage switching (ZWS), low converter size, high switching frequency and low-voltage stress. Metal–oxide–semiconductor field-effect transistors (MOSFETs) with high switching frequency are used to reduce the converter size and increase circuit efficiency. To overcome low-voltage stress and high turn-on resistance of MOSFETs, the series half-bridge topology is adopted in the proposed converter. Hence, the low-voltage stress MOSFETs can be used for medium-input voltage applications. The asymmetric pulse-width modulation is used to generate the gating signals and achieve the ZWS. On the secondary side, the parallel connection of two diode rectifiers is adopted to reduce the current rating of passive components. On the primary side, the series connection of two transformers is used to balance two output inductor currents. Two flying capacitors are used to automatically balance the input split capacitor voltages. Finally, experiments with 1000 W rated power are performed to verify the theoretical analysis and the effectiveness of proposed converter.  相似文献   

17.
ABSTRACT

An interleaved frequency control soft switching converter is studied for solar power or fuel cell power applications. The proposed circuit topology contains two parallel current-fed circuit cells with interleaved pulse-width modulation operation. Thus, the ripple currents at input and output terminals are decreased. In each circuit cell, the proposed current-fed dc-dc converter includes boost circuit and resonant circuit to achieve current ripple-free on low voltage side and less switching losses on active devices. The boost circuit and the resonant circuit have same active devices to decrease power switches. Due to the resonant behaviour, the reverse recovery current loss on secondary diodes is removed. The voltage doubler circuit topology is accomplished on secondary-side to reduce diode counts and conduction loss. The performance and effectiveness of the developed interleaved PWM current-fed converter are verified and confirmed by experiments.  相似文献   

18.
Resonant converter has been widely used for the benefits of low switching losses and high circuit efficiency. However, the wide frequency variation is the main drawback of resonant converter. This paper studies a new modular resonant converter with duty-cycle control to overcome this problem and realise the advantages of low switching losses, no reverse recovery current loss, balance input split voltages and constant frequency operation for medium voltage direct currentgrid or system network. Series full-bridge (FB) converters are used in the studied circuit in order to reduce the voltage stresses and power rating on power semiconductors. Flying capacitor is used between two FB converters to balance input split voltages. Two circuit modules are paralleled on the secondary side to lessen the current rating of rectifier diodes and the size of magnetic components. The resonant tank is operated at inductive load circuit to help power switches to be turned on at zero voltage with wide load range. The pulse-width modulation scheme is used to regulate output voltage. Experimental verifications are provided to show the performance of the proposed circuit.  相似文献   

19.
There are many transformer applications where tight coupling is difficult to achieve. Therefore, an analysis of a resonant converter with a nonideal coupling is required. In this paper, a forward resonant converter with a coupling ranging from zero to one was analyzed. It was found that the traditional quasi-resonant converter becomes a multiresonant converter when the coupling is less than one. This is because the finite switching time of the rectifying diode reduces the input inductance of the transformer to effectively give a converter that uses two different inductances during any one switching period. It was also found that, in general, the converter has seven topological states. The design equations are derived analytically to provide a fundamental understanding of the converter. The peak voltage and current stress of the power switch as a function of the coupling were investigated. It was found that as the coupling is reduced, the peak voltage reduces and the peak current increases. A 48-5 V 20-W forward converter with a coupling of 0.9 was designed and tested. A coupling of 0.9 was chosen as it gives a duty cycle of 50%, has zero voltage switching for all loads, and has a peak switch voltage of 3.3 times the input voltage. The experiment verified the analysis and the practicality of a reduced coupling transformer, and the measured efficiency of the converter was 80%  相似文献   

20.
The proposed circuit is a multiple output quasi-resonant (QR) zero-current switching (ZCS) switched-capacitor (SC) converter with a bidirectional power flow control conversion scheme. The principles of the proposed multiple output QR ZCS SC bidirectional dc–dc converter are described using a detailed circuit model for analysis. Simulation and experimental results are carried out to verify the validity and the soft switching performance of the proposed converter. The maximum efficiency achievable is about 94 and 92% for the forward and reverse power flow control schemes, respectively. The output voltage can be regulated by changing the switching frequency for the designed compensated closed-loop controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号