共查询到15条相似文献,搜索用时 78 毫秒
1.
快速实现椭圆曲线密码体制的一个关键问题就是椭圆曲线上点的数乘.文中利用大整数S可以表示为S=S1m+S2的形式,提出了一种贪心算法.该算法比经典算法减少了点的加法的计算次数,从而加快了椭圆曲线上点的数乘的运算速度. 相似文献
2.
本文分析了已有的一些计算椭圆曲线上点乘运算的快速算法,定义了整数阶乘展开式,并提出一种新的基于阶乘展开式的计算椭圆曲线上点乘的快速算法。对于200位的大整数点乘,与二进制算法相比,本文算法的倍点数减少了11%,点加数也有较大的减少。 相似文献
3.
点乘运算是实现椭圆曲线密码体制的基本运算,同时也是最耗时的运算,它的运算效率直接决定着ECC的性能。本文从三方面分析了椭圆曲线密码体制中快速点乘的实现,并将Marc Joye和Sung—Ming Yen提出的具有最小汉明重的从左到右带符号二进制编码应用于椭圆曲线密码体制的点乘算法中,生成了一个能快速实现的二进制编码新点乘算法,适用于计算能力和集成电路空间受限,要求高速实现的情况。 相似文献
4.
椭圆曲线密码体制是公钥密码体制研究的热点。计算椭圆曲线上点的数乘是椭圆曲线密码算法的基础。固定窗口算法利用大整数s的2^u进制表示和适量的预计算,减少椭圆曲线上点的加法运算,从而加快椭圆曲线上点的数乘的运算速度。介绍了利用混合坐标思想,减少有限域上求逆运算的次数,对固定窗口算法进行局部优化的方法。最后给出了固定窗口算法的复杂性分析,并讨论了窗口宽度的最佳选取。 相似文献
5.
椭圆曲线密码体制中的快速点乘算法 总被引:1,自引:0,他引:1
点乘运算是实现椭圆曲线密码体制的基本运算,同时也是最耗时的运算,它的运算效率直接决定着ECC的性能。本文从三方面分析了椭圆曲线密码体制中快速点乘的实现,并将Marc Joye和Sung-Ming Yen提出的具有最小汉明重的从左到右带符号二进制编码应用于椭圆曲线密码体制的点乘算法中,生成了一个能快速实现的二进制编码新点乘算法,适用于计算能力和集成电路空间受限,要求高速实现的情况。 相似文献
6.
椭圆曲线密码体制快速算法研究 总被引:5,自引:0,他引:5
椭圆曲线密码体制是一种基于代数曲线的公开钥密码体制。使用椭圆曲线作为公钥密码体制的基础是由于定义在有限域上的椭圆曲线上的点的集合可构成阿贝尔群,由此可定义其上的离散对数,即椭圆离散对数。而求此离散对数是非常困难的,由此双方可以构造公钥密码体制,但椭圆曲线密码体制上的计算又是很复杂的,在实际实现过程中执行速度往往很慢。从构建快速、安全的密码体制的思想出发,文章分析了影响椭圆曲线密码体制执行速度的相关问题,为了提高椭圆曲线密码体制的运行速度,设计了其上的快速算法。 相似文献
7.
在椭圆曲线密码系统中,其核心操作是点乘运算κP,P是椭圆曲线上的点,忌是整数。怎样提高点乘计算速度,已成为热点研究领域。本文提出了一种新的基于整数拆分与预计算相结合的快速点乘算法。 相似文献
8.
并行结构的椭圆曲线密码算法实现 总被引:1,自引:0,他引:1
介绍了椭圆曲线密码算法中的基本运算--点加、点倍算法的选取及用点加点倍并行实现点乘的方法,提出了在一个CPU两个公钥运算核的SoC系统中点加、点倍并行计算完成点乘的思想,并给出了一种在椭圆曲线密码系统(ECC)中的高效点乘运算的具体实现.该设计使得ECC运算比普通算法在效率上提高60%以上. 相似文献
9.
10.
11.
该文提出并实现了一种快速的椭圆曲线标量乘方法。理论分析与实验结果表明,该方法安全、有效。例如,对于160位的大整数标量乘,与固定基窗口方法相比,其实现速度提高了82.5%。 相似文献
12.
13.
减少求逆运算次数是快速计算椭圆曲线密码的主要方法之一。若采用逐次累加的方法计算特征3有限域上椭圆曲线标量乘法2kP,需要k次求逆运算。本文根据递推归纳、转换求逆为乘法的思想,推导了直接计算2kP的公式,使求逆运算降至1次。从理论上比较了两种计算方法的运算效率:所提出的新算法在k=4时比逐次累加计算量减少1%,并且减少量随着k的增大而增多,在极限情况下可减少约26%。 相似文献
14.
椭圆曲线密码中一种多标量乘算法 总被引:2,自引:0,他引:2
标量乘和多标量乘是实现椭圆曲线密码体制的核心运算,其运算速度从整体上决定了椭圆曲线密码体制的实现效率.提出了一种多标量乘算法,该算法的基本思想是,将标量用带符号的整数阶乘展开式表示,并结合固定基窗口标量乘算法,使得实现多标量乘算法只需做点加运算即可.这不仅突破了传统求多标量乘算法的模式,而且提高了多标量乘的计算速度.同... 相似文献
15.
基于复合域上的椭圆曲线密码体制的计算算法 总被引:3,自引:0,他引:3
基于有限域上椭圆曲经公开密钥协议的离散对数计算算法正日益成为热点,其基本的操作是标量乘法:即用一整数乘以椭圆曲线上给定的点P。协议的主要开锁在于椭圆曲线的标量乘操作上,本文给出了3个逄法进行椭圆曲线密码系统的有效计算,第一个算法采用加-减法链的方法处理标量乘法问题;第二个算法给出了正整数n的NAF形式;第三个算法采用窗口的方法处理NAF(n)从而进一步提高加-减法链的效率,这三个算法的有机结合从银大程度上提高了椭圆曲线密码体制的加/解密速度。 相似文献