首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
Crosslinked poly(acryloylmorpholine) and its copolymers poly(acryloyl morpholine‐co‐acrylic acid) and poly(acryloylmorpholine‐co‐2‐acrylamide‐2‐methyl‐1‐propane sulfonic acid) were synthesized by radical polymerization. The resins were completely insoluble in water and were characterized with Fourier transform infrared spectroscopy and thermal analysis. The metal ions Ag(I), Cu(II), Cd(II), Hg(II), Zn(II), Pb(II), Al(III), and Cr(III) were investigated under competitive and noncompetitive conditions by a batch equilibrium procedure. The resin‐metal‐ion equilibrium was achieved before 5 min. The recovery of the resin was investigated at 20°C with different concentrations of HNO3 and HClO4. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3266–3274, 2006  相似文献   

2.
Poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid), poly(methacrylic acid), and five copolymers of poly[(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid)‐co‐(methacrylic acid)] were synthesized by radical polymerization and obtained in yields >97%. The polymers were characterized by FT‐IR, [1H]NMR, and [13C]NMR and studied by means of the Liquid‐phase Polymer‐based Retention (LPR) technique. The metal ion retention ability of the copolymers for Cu(II), Cd(II), Co(II), Hg(II), Ni(II), Zn(II), Cr(III) and Ag(I) was investigated at different pH values because of their environmental and analytical interest. The retention profiles of the copolymers were compared with those of the corresponding homopolymers and retention of metal ions was found to increase with increasing pH. © 2001 Society of Chemical Industry  相似文献   

3.
The crosslinked poly(1‐vinylimidazole‐co‐acrylic acid), P(VIm‐co‐AA), and poly(1‐vinylimidazole‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) P(VIm‐co‐APSA) were synthesized by radical polymerization and tested as adsorbents under competitive and noncompetitive conditions for Cu(II), Cd(II), Hg(II), Zn(II), Pb(II), and Cr(III) by batch equilibrium procedure. The resin–metal ion equilibrium was achieved before 1 h. The resin P(VIm‐co‐AA) showed a maximum retention capacity (MRC) value for Pb(II) at pH 3 and Hg(II) at pH 1 of 1.1 and 1.2 mEq/g, respectively, and the resin P(VIm‐co‐AA) showed at pH 3 the following MRC values: Hg(II) (1.5 mEq/g), Cd(II) (1.9 mEq/g), Zn(II) (2.7 mEq/g), and Cr(III) (2.8 mEq/g). The recovery of the resin was investigated at 25°C with 1 M and 4 M HNO3 and 1 M and 4 M HClO4. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2852–2856, 2003  相似文献   

4.
Radical polymerization was used to synthesize three copolymers of [3‐(methacryloylamino)propyl]trimethylammonium chloride and methacrylic acid [P(MPTA‐co‐MA)]; three copolymers of MPTA and 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid [P(MPTA‐co‐APSA)], which had different feed monomer mole ratios but a constant total number of moles (0.03 mol); and the homopolymers poly(MPTA), poly(MA), and poly(APSA). The yields for all homopolymers and copolymers were over 70 and 90%, respectively. All products were dissolved in water, purified, and fractioned by an ultrafiltration membrane with different exclusion limits of the molecular weight (3,000, 10,000, 30,000, and 100,000 g mol?1). All fractions were lyophilized. The polymeric materials were characterized by FTIR and 1H‐NMR spectroscopy. The metal ion interaction with the hydrophilic polymers was determined as a function of the pH and the filtration factor. It was dependent on the pH, type of ligand group, and charge of the metal ion. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1715–1721, 2003  相似文献   

5.
In this study, polymer–clay nanocomposites (PCNs) composed of poly(vinyl alcohol)s (PVAs), poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid), and fullers earth were prepared by the effective dispersal of inorganic nanoclays in the organic PVA matrix via in situ free‐radical polymerization with potassium persulfate as an initiator and N,N‐methylene bisacrylamide as a crosslinker. The monomer, 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid, was grafted onto the PVA backbone, and at the same time, fullers earth layers were intercalated and exfoliated into the grafted copolymer, especially at a low or moderate loading of the fullers earth. The synthesized PCN materials were characterized by Fourier transform infrared spectroscopy and wide‐angle X‐ray diffraction techniques. The morphological features of the synthesized materials were studied by scanning electron microscopy; this revealed that the swelling ratio of this nanocomposite increased with increasing fullers earth content. The X‐ray diffraction results indicated that the fullers earth was exfoliated in the nanocomposite matrix, and its introduction into the polymer matrix enhanced the percentage crystallinity of the polymer. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

6.
Poly(2‐acrylamido glycolic acid‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) [P(AGA‐co‐APSA)] was synthesized by radical polymerization in an aqueous solution. The water‐soluble polymer, containing secondary amide, hydroxyl, carboxylic, and sulfonic acid groups, was investigated, in view of their metal‐ion‐binding properties, as a polychelatogen with the liquid‐phase polymer‐based retention technique under different experimental conditions. The investigated metal ions were Ag+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Pb2+, and Cr3+, and these were studied at pHs 3, 5, and 7. P(AGA‐co‐APSA) showed efficient retention of all metal ions at the pHs studied, with a minimum of 60% for Co(II) at pH 3 and a maximum close to 100% at pH 7 for all metal ions. The maximum retention capacity (n metal ion/n polymer) ranged from 0.22 for Cd2+ to 0.34 for Ag+. The antibacterial activity of Ag+, Cu2+, Zn2+, and Cd2+ polymer–metal complexes was studied, and P(AGA‐co‐APSA)–Cd2+ presented selective antibacterial activity for Staphylococcus aureus with a minimum inhibitory concentration of 2 μg/mL. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
In this study, we explored a new ion exchange material synthesized by radical polymerization of styrene and 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid by using 2,2′‐azo‐isobutyronitrile (1 mol %) and divinylbenzene (0.5 mol %) as initiator and crosslinking reagents, respectively. The resin was obtained from a large excess (90%) of styrene in the feed. The yield was 72.3%. The resin was completely insoluble in water and characterized by elemental analysis, FTIR spectroscopy, scanning electron microscopy, and thermal analysis. The metal ion retention capability was investigated for Ag(I), Hg(II), Cd(II), Zn(II), Pb(II), and Cr(III). The effect of pH, time, and resin/metal ion mol ratio on the metal ion retention was studied. Selectivity of the resins from a mixture of metal ions and the maximum retention capacity at optimum pH were also determined. The recovery of the resin by using 1 and 4 M HClO4 and HNO3 demonstrated that it is possible to recover the resin above 80%. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1230–1235, 2003  相似文献   

8.
The water‐soluble polymers poly(styrene sulfonic acid‐co‐maleic acid) and poly(acrylic acid‐co‐maleic acid) were investigated with respect to their metal‐ion‐binding ability with ultrafiltration. The studied metal ions included Ag(I), Cu(II), Ni(II), Co(II), Ca(II), Mg(II), Pb(II), Cd(II), Zn(II), Al(III), and Cr(III) ions. The retention properties of the polyelectrolytes for the metal ions depended strongly on the ligand type. As for the carboxylate ligands, with increasing concentration and pH, the metal‐binding affinity increased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1091–1099, 2005  相似文献   

9.
The macromonomer polyethylene glycol methylether methacrylate was homo‐ and copolymerized with 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid under three feed monomer ratios. The initiator used was ammonium peroxydisulfate (0.2 mol %). All the polymers were completely soluble in water. The copolymer composition was determined by elemental analysis. The metal ion interaction capability of the three polymers was investigated through the liquid‐phase polymer‐based retention (LPR) technique at different values of pH and filtration factor Z. The highest metal ion retention ability was observed at pH 5.0. The homopolymer showed a high selectivity for Ni(II) ions at pH 3.0. The copolymers (PEGMEM)1.51co‐(APSA)1.00 and (PEGMEM)1.00co‐(APSA)1.95 showed a high selectivity for Cr(III) ions at pH 3.0. The maximum retention capacity, in general, was similar for the homo‐ and copolymers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2955–2960, 2004  相似文献   

10.
Crosslinked poly(1‐vinyl imidazole‐co‐acrylic acid) and crosslinked poly(1‐vinylmidazole‐co‐2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid) were synthesized by radical polymerization and characterized by elemental analysis and FTIR spectroscopy. The polymerization yields were 79 and 99%, respectively. The metal ion binding properties for copper(II) and uranium(VI) were studied under noncompetitive and competitive conditions by Batch equilibrium procedure. The resin crosslinked poly(1‐vinyl imidazole‐co‐acrylic acid) showed a higher dependence on pH than crosslinked poly(1‐vinylmidazole‐co‐2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid). The retention of uranyl ions for the latter resin was close to 100% at pH 5.0. The higher maximum retention capacity was close to 0.8 mmol/g dry resin at pH 5.0. Regeneration of the resin was possible by treatment with basic eluent. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 706–711, 2006  相似文献   

11.
Four different copolymers, of acrylamide and acrylic acid, acrylamide and 2‐acrylamido‐2‐methyl propane sulfonic acid, N,N‐dimethylacrylamide and acrylic acid, and N,N‐dimethylacrylamide and 2‐acrylamido‐2‐methyl propane sulfonic acid (sodium salts), were prepared. The copolymers were characterized by their intrinsic viscosities and monomer ratios and with IR, 1H‐NMR, and X‐ray diffraction (XRD) spectroscopy. No crystallinity was observed by differential thermal analysis, and this was well supported by XRD. All the polymers showed low decomposition temperatures. A number of decomposition temperatures were observed in differential thermogravimetry thermograms because of the elimination of gases such as CO2, SO2, CO, and NH3. The replacement of the acrylate group with a sulfonate group produced polymers that were more compatible with brine, whereas the replacement of acrylamide with a more hydrophobic group such as N,N‐dimethylacrylamide produced a more shear‐resistant polymer. A N,N‐dimethylacrylamide‐co‐sodium‐2‐acrylamido‐2‐methyl propane sulfonate copolymer was better with respect to thermal stability when the polymer solution was aged at 120°C for a period of 1 month. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1869–1878, 2003  相似文献   

12.
The thermoresponsive properties in aqueous solution of the graft copolymer poly(acrylic acid‐co‐2‐acrylamido‐2‐methyl propane sulfonic acid)‐g‐poly(N‐isopropylacrylamide) [P(AA‐co‐AMPSA)‐g‐PNIPAM] were studied and compared to the corresponding behavior of the poly(acrylic acid)‐g‐poly(N‐isopropylacrylamide) (PAA‐g‐PNIPAM) graft product. Both products contain about 40% (w/w) of PNIPAM, whereas the backbone, P(AA‐co‐AMPSA), of the first copolymer contains about 40% of AMPSA mole units. The strongly charged P(AA‐co‐AMPSA)‐g‐PNIPAM graft copolymer was water soluble over the whole pH range, whereas the PAA‐g‐PNIPAM copolymer precipitated out from water at pH < 4. As a result, the first product exhibited a temperature‐sensitive behavior in a wide pH range, extended in the acidic region, whereas in semidilute aqueous solutions, an important thermothickening behavior was observed, even at low pH (pH = 3.0). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3466–3470, 2004  相似文献   

13.
The water‐insoluble resin poly(2‐acrylamido‐2‐methyl‐1‐propanosulfonic acid‐co‐4‐vinyl pyridine), through a radical polymerization solution, was synthesized with ammonium persulfate as an initiator and N,N‐methylene bisacrylamide as a crosslinking reagent. The metal‐ion‐retention properties were studied by batch and column equilibrium procedures for the following metal ions: Hg(II), Cu(II), Cd(II), Zn(II), Pb(II), and Cr(III). These properties were investigated under competitive and noncompetitive conditions. The effects of the pH, maximum retention capacity, and regeneration capacity were studied. The resin showed a high retention ability for Hg(II) ions at pH 2.0. The retention of Hg(II) ions from a mixture of ions was greater than 90%. The resin showed a high selectivity for Hg(II) with respect to other metal ions. The Hg(II)‐loaded resin was able to be recovered with 4M HClO4. The retention capacity was kept after four cycles of adsorption and desorption. The retention properties for Hg(II) were very similar with the batch and column methods. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3556–3562, 2003  相似文献   

14.
This research presents the synthesis of novel nanocomposite ion exchange resins based on poly(sodium 4‐styrene sulfonate) and poly(2‐acrylamido glycolic acid). Nanocomposites were synthesized by in situ radical polymerization using organic modified montmorillonite as filler and different clay contents. Loaded resins showed improvements in mechanical properties compared with unloaded resins: specifically, when the nominal montmorillonite content was 2.5 wt%, poly(sodium 4‐styrene sulfonate) nanocomposite increased its shear modulus from 323 to 910 Pa and doubled its elastic recovery ratio, and the yield point was almost 20 times higher than for unloaded resins. In the case of metal ion retention, the effect of pH and clay content were studied for Cd(II), Pb(II), Cu(II), Cr(III) and Al(III) by a batch procedure. Results showed high efficiency, reaching over 80% after only 1 h of contact. Poly(2‐acrylamido glycolic acid) presented a higher pH dependence than poly(sodium 4‐styrene sulfonate). In addition, it was observed that montmorillonite contributes to retention capacity from the increase in distribution coefficients for loaded resins compared with unloaded resins. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
Polyaniline [p(An)], one of the most known conducting polymers, was prepared within superporus nonionic polyacrylamide [p(AAm)], anionic poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid sodium salt) [p(AMPS)], and cationic poly(3‐acrylamidopropyltrimethyl ammonium chloride) [p(APTMACl)] cryogels. After they were synthesized, washed, and dried, the neutral p(AAm), anionic p(AMPS), and cationic p(APTMACl) cryogels were soaked in an ammonium persulfate/aniline solution (1:1.25 ratio) in 1 M hydrochloric acid for the in situ oxidative polymerization of p(An) with the cryogel matrices as templates or reactors. The prepared p(AAm)/p(An), p(AMPS)/p(An), and p(APTMACl)/p(An) semi‐interpenetrating polymer network (semi‐IPN) conductive cryogel composites were characterized with scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and conductivity analysis. The SEM images revealed that the superporus cryogel networks were almost completely filled with p(An) conductive polymers (CPs). Among the cryogel–CP semi‐IPNs, we found that p(AAm)/p(An) semi‐IPN conductive cryogel composites provided the highest conductivity values of 1.4 × 10?2 ± 4 × 10?4 S/cm; this was a 6.4 × 106 fold increase in the conductivity from the values of 2.2 × 10?9 ± 1 × 10?10 for p(AAm) cryogels. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44137.  相似文献   

16.
Polyamphoteric hydrogel membranes were synthesized by graft copolymerization of N‐isopropylacrylamide (NIPAm) and 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS) onto chitosan (CS). The incorporation of poly(NIPAm) (PNIPAm) and poly(AMPS) (PAMPS) into CS was confirmed by FTIR spectroscopy. The swelling behavior of membranes as a function of pH, temperature, and ionic strength was studied. Permeability of solutes through these membranes was investigated at different temperatures. The results showed the dual sensitivity of membranes toward pH and temperature. The formation of the polyelectrolyte complex between CS and PAMPS showed influence on the lower critical solution temperature of PNIPAm. The permeabilities of solutes through these membranes were strongly dependent on the size of solutes, solution temperature, and hydrophilicity of the membranes. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1454–1461, 2004  相似文献   

17.
A series of nanocomposite hydrogels were prepared from acrylic acid (AA), N‐isopropylacrylamide (NIPAAm), and intercalated hydrotalcite (IHT) by photopolymerization. The influence of the intercalating content of 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS) in HT on the swelling and mechanical properties for poly(AA‐co‐NIPAAm)/IHT nanocomposite hydrogels was investigated. The results showed that the higher the content of the AMPS‐HT was, the higher the swelling ratio of the gels and the higher the content of the intercalating agent was, the lower swelling ratio. It was also demonstrated that the swelling ratio of the gel was not affected by the counterion in HT. The gel strength and crosslinking density were not enhanced by adding AMPS‐HT into the gel composition, but the maximum effective crosslink density and shear modulus of the nanocomposite hydrogels were increased with an increase of the content of the intercalating agent in HT. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1572–1580, 2005  相似文献   

18.
Polymer metal complexes of poly(styrene sulfonic acid‐co‐maleic acid) and Cu(II), Ni(II), Co(II), and Zn(II) were synthesized. The magnetic, spectral, and thermal properties, as well as the electrical conductivities, of the chelates were investigated, and possible structures were assigned to the polychelates. Semiempirical calculations at the AM1 level were carried out on the geometrical arrangement of the polychelates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2546–2551, 2002  相似文献   

19.
The surface‐active polymer (FPAM) was synthesized by free‐radical polymerization of acrylamide (AM), 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (AMPS) and N ‐dodecyl‐N ‐perfluoro octane sulfonyl acrylamide (AMPD), which was prior prepared by reacting dodecylamine, perfluoro‐1‐octanesulfonyl fluoride, and acryloyl chloride. Parameters affecting the intrinsic viscosity ([η]) and apparent viscosity (η) of FPAM, such as reaction temperature, AMPD concentration, AMPS concentration, monomer concentration, initiator concentration, and pH were examined. Apparent viscosity and interfacial tension (IFT) of FPAM solution were evaluated. Subsequently, temperature tolerance and shear tolerance were investigated by comparing with hydrolyzed polyacrylamide (HPAM), and results indicated that the FPAM displayed better performances than HPAM. FPAM can reduce the IFT between crude oil/water, and the IFT values are around at 2.91 and 3.9 mN m?1 corresponding to FPAM and HPAM/FC‐118. The sandpack model oil displacement experiment showed that water flooding can further increase the oil recovery to 15.01% (FPAM), compared with 9.26% oil recovery for HPAM, and 10.99% oil recovery for HPAM/FC‐118. The glass micromodel techniques for studying enhanced oil recovery get a good result and provide a useful reference for understanding the displacement behaviors in polymer flood process. It could be concluded that the introduction of fluorinated groups in the polymer chain was helpful in enhancing the oil displacement efficiency. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44672.  相似文献   

20.
Radical copolymerizations of 1‐vinyl‐2‐pyrrolidone with acrylamide and N,N′‐dimethylacrylamide at different feed ratios were investigated. The copolymers were characterized by Fourier transform infrared spectroscopy, 1H NMR, and 13C NMR spectroscopy. The copolymer composition was determined from the 1H NMR spectra and found to be statistical. The metal complexation of poly(acrylamide‐co‐1‐vinyl‐2‐pyrrolidone) and poly(N,N′‐dimethylacrylamide‐co‐1‐vinyl‐2‐pyrrolidone) for the metal ions Cu(II), Co(II), Ni(II), Cd(II), Zn(II), Pb(II), Fe(III), and Cr(III) were investigated in an aqueous phase. The liquid‐phase polymer‐based retention method is based on the retention of inorganic ions by soluble polymers in a membrane filtration cell and subsequent separation of low‐molecular compounds from the polymer complex formed. The metal ion interaction with the hydrophilic polymers was determined as a function of the pH and the filtration factor. Poly(N,N‐dimethylacrylamide‐co‐1‐vinyl‐2‐pyrrolidone) showed a higher affinity for the metal ions than poly(acrylamide‐co‐1‐vinyl‐2‐pyrrolidone). According to the interaction pattern obtained, Cr(III) and Cu(II) formed the most stable complexes at pH 7. Pb(II) and Zn(II) were not retained. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 741–750, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号