首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用正交试验法,研究了保压压力、冷却时间、注塑速率、注塑压力等注塑工艺条件对煤基均聚聚丙烯S1003拉伸性能的影响。结果表明:注塑S1003的保压压力为9 MPa、注射压力为7 MPa、注射速度为120 mm/s,其他工艺条件按GB/T 2546.2—2003进行时,S1003的性能最佳。通过极差分析对注塑工艺的影响程度进行排序为:注射压力对S1003的拉伸屈服应力影响最大,保压压力对S1003的拉伸断裂应力影响最大,注射速度对S1003的断裂标称应变影响最大,冷却时间对S1003的拉伸性能影响不大。  相似文献   

2.
选用等规聚丙烯为实验材料,基于正交实验设计方法进行微注射成型实验,制备了微注塑拉伸试样,并选取拉伸弹性模量和拉伸屈服应力作为力学性能指标。采用直观分析和方差分析法对拉伸实验的结果进行分析,研究工艺参数对厚度为1.0 mm和0.2 mm试样拉伸性能的影响规律及重要性,并分析了尺度效应对试样力学性能的影响。结果表明,微注塑实验的拉伸弹性模量和拉伸屈服应力都随着试样尺寸的减小而增大,且不同试样尺寸下,各工艺参数对拉伸弹性模量和拉伸屈服应力的影响规律和重要性也不同。对于厚度为1.0 mm的试样,其拉伸弹性模量受保压压力的影响最大,随保压压力增加呈现先增后减的趋势;其屈服应力受保压时间的影响最大,随保压时间增加呈现先增后减的趋势。对于厚度为0.2 mm的试样,拉伸弹性模量和拉伸屈服应力受熔体温度的影响最大,且两者均随着熔体温度的升高而减小。  相似文献   

3.
以污水处理厂污水除砂机使用的玻璃纤维增强尼龙6塑料链条的链节为例,对其注射成型加工工艺进行研究。采用正交实验法研究了料筒温度、注塑压力及速度、保压压力及时间等工艺条件对成型链节的外观和质量的影响并对成型工艺参数进行了优化。结果表明,料筒温度对链节质量的影响最大,注塑压力的影响其次,保压压力的影响较小,而注射速度和保压时间对质量几乎没有影响。当料筒温度为250℃,注塑压力为85 MPa、注射速度为55 mm/s,保压压力为70 MPa、保压时间为6 s时,成型链节的质量最大,为275.8 g,其外观光滑,无"浮纤"现象,由其组成的链条在污水处理厂装机实际运行时,达到了设计上要求的4个月的运行时间。拉伸试验结果表明,未优化前成型的272.3 g链节的拉伸断裂力低于优化后成型的275.8 g链节,且272.3 g链节根部拉伸断面有明显缩孔。  相似文献   

4.
制备了长玻璃纤维(LGF)增强聚甲醛(POM)复合材料。通过6因素2水平的正交试验,探讨了注射压力、注射速度、模具温度、保压压力、保压时间、冷却时间等工艺条件对LGF增强POM复合材料的制品表观和拉伸强度的影响。结果表明:注射压力、注射速度、保压时间和模具温度等4个工艺条件对LGF增强POM制品表观和拉伸强度的影响最大,当注塑成型条件分别为料筒温度180190℃、注射压力60 MPa、注射速度60 mm/s、模具温度80℃、保压时间15 s时,制品具有最佳的表观和力学性能。  相似文献   

5.
采用正交分析法考察了机筒最高温度,注塑压力,保压时间,喷嘴温度对注塑木塑复合材料性能的影响,实验结果表明:在本试验中机筒最高温度对冲击强度和对拉伸强度有较大的影响,是影响冲击强度和对拉伸强度的主要因素,当最高机筒温度为185℃、注射压力为5.5-6.5 MPa、保压时间为10 s、喷嘴温度为200℃时为最优工艺。  相似文献   

6.
采用不同的工艺条件对无规共聚聚丙烯EP548N进行注塑成型,测试注塑件表面光泽度、黄色指数和透光率,分析了注塑成型条件对制品光学性能的影响。确定聚丙烯EP548N的最佳注塑工艺为:熔体温度200℃,模具温度40℃,注射速度210mm/s、保压压力4.6MPa、注射压力4.9MPa,注塑工艺条件改变对聚丙烯EP548N注塑件透光率影响较小。  相似文献   

7.
对丙烯腈-丁二烯-苯乙烯三元共聚物(ABS)采用不同的注塑成型工艺进行注塑,研究了注射速度、注射压力和保压压力对ABS树脂冲击强度、冲击样条缩痕深度和样品质量的影响。结果表明:提高注射速度、注射压力均使样品的冲击强度降低,质量提高,冲击样条缩痕减小。注射速度比注射压力对产品的性能影响大,调整参数时应优先考虑注射速度。在50~70 MPa的保压压力范围内,保压压力对ABS树脂的冲击性能影响较小。  相似文献   

8.
以某杯形塑件为例,设计了随形冷却水道模具。在Moldflow软件模拟注塑成型过程的基础上,利用正交试验法分析了熔体温度、注射压力、保压压力和保压时间等工艺参数对制品成型周期的影响。通过遗传算法和Moldflow获得的最佳注塑工艺参数为熔体温度180℃,注射压力22 MPa,保压压力16 MPa,保压时间8 s,成型周期14. 11 s。在最佳工艺参数组合下进行注塑成型试验,平均注塑成型周期为14. 19 s。结果表明,模拟结果和试验结果之间相接近。将数值模拟和遗传算法相结合,可以有效提高运算速度和优化效率。  相似文献   

9.
针对某异型出风罩注塑成型工艺,以聚碳酸酯/丙烯腈-丁二烯-苯乙烯共聚物(PC/ABS)工程塑料合金为填料,运用Moldflow软件对其注塑过程进行模流分析,通过田口实验设计研究了熔体温度、保压时间、保压压力、注射时间和模具温度对塑件收缩率和翘曲变形量的影响,得到它们对塑件收缩率的影响次序为:保压时间>熔体温度>保压压力>注射时间>模具温度,对翘曲变形量的影响次序为:保压压力>注射时间>熔体温度>保压时间>模具温度。基于灰色关联分析,获得了最优组合工艺参数,即:熔体温度280℃、模具温度为65℃、注塑时间2.1 s、保压时间11 s、保压压力21 MPa。优化后的仿真结果表明,塑件的体积收缩率为6.523%、翘曲变形量为0.80 mm,比灰色关联次序中位组合的样本数据分别降低6.9%和15.8%,并获得最大注射压力为20.34 MPa、最大锁模力为3.25×10^5 N,为后期模具的设计和注塑参数设定提供了有力的参考,缩短了模具开发周期。  相似文献   

10.
注塑制品的重量重复精度是衡量注塑制品质量精度的重要技术参数。通过Taguchi试验设计方法,研究了熔体温度、模具温度、保压压力、保压时间、峰值型腔压力对微注射成型制品重量的影响。实验结果表明,保压压力是影响制品重量最主要的工艺参数。无论样条受到拉伸还是冲击,其重量均会随着保压压力的增大而增加,保压时间对制品重量的影响较小。当拉伸样条峰值型腔压力为65 MPa,冲击样条峰值型腔压力为68 MPa时,随着峰值型腔压力增加,制品重量显著增加。当保压压力从85 MPa增加到100 MPa,拉伸样条的重量从0.544 g提高到0.559 g,增加了2.7%,冲击样条的重量从0.418 g提高到0.425 g,增加了1.7%。  相似文献   

11.
采用注塑成型方法制备了通用膜料DFDA-7042试样,研究了注塑条件对试样力学性能的影响,并对加工条件进行了优选。结果表明,适宜的注射压力在3~5 MPa之间,保压压力在3~4.5 MPa之间,保压时间设定在20 s,冷却时间设定在30~45 s之间,注射速率设定在100~120 mm/s。  相似文献   

12.
采用正交试验和Moldflow数值模拟相结合的方法,对汽车A柱下饰板的注射成型过程进行了分析,研究了模具温度、熔体温度、注射时间和保压压力等工艺参数对残余应力和翘曲变形的影响。通过极差分析得到,熔体温度对翘曲变形影响最大,保压压力对残余应力影响最大,最佳工艺参数组合为模具温度40 ℃,熔体温度205 ℃,注射时间5 s,保压压力45 MPa;通过仿真分析与实际成型方案进行比较,汽车A柱下饰板的翘曲变形由3.847 mm降为3.121 mm,残余应力由66.95 MPa降为65.21 MPa。  相似文献   

13.
孙晓辉  张婧婧 《塑料》2020,49(2):152-155
采用熔融共混法制备了多种粒径、不同含量的石墨烯(GNP)/聚丙烯(PP)纳米复合材料,通过流变实验和拉伸实验分别研究了GNP粒径和GNP含量对复合材料流变特性的影响以及注塑成型工艺参数(注塑温度、注射压力、注射速度及背压)对复合材料拉伸性能的影响。研究结果表明,GNP微粒能够显著改善PP基体的抗拉强度,在一定含量范围(3%~9%)和较大粒径(40μm)时,会对PP熔体的流动性产生较大影响。虽然,注塑成型工艺参数对GNP/PP复合材料的抗拉强度影响较小,但是,其对材料的韧性影响较大。随着注塑的温度、压力、速度和背压的升高,材料韧性呈先增后降的趋势,最优参数组合为注塑温度215℃、注射压力60 MPa、注射速度50%、背压压力1 MPa。  相似文献   

14.
对汽车轮眉的注塑成型过程进行了模拟分析。首先通过有限元软件ANSYS对轮眉进行载荷分析,得到轮眉的应力分布图和形变分布图。然后利用Moldfl ow软件模拟轮眉的注塑成型过程,设计了两种注塑成型方案,分别进行流变、冷却和翘曲模拟,分析轮眉的填充、保压、收缩和变形等情况,选择最优的注塑成型方案。再采用正交试验法分析影响轮眉翘曲变形的因素,寻找可使轮眉翘曲变形量最小的最优参数组合。结果表明:轮眉应力集中的位置在外表面拐角处;最优的注塑成型方案为单浇口浇注;各因素对翘曲变形的影响程度为保压时间保压压力熔体温度模具温度注射时间;最优工艺参数组合为熔体温度250℃、模具温度40℃、注射时间2.5 s、保压时间10 s、保压压力90 MPa。最优工艺条件下,轮眉的最大翘曲量可降至0.774 mm。  相似文献   

15.
通过注射成型试验探索聚对苯二甲酸乙二酯(PET)的成型工艺条件,并结合紫外可见光谱和力学性能测试方法,分析注塑成型工艺对PET性能的影响。研究发现:PET适宜的注射成型温度为280℃,模具温度为70℃,注塑压力为50 MPa,冷却时间为20 s。此条件下制得的PET制品不易结晶、透明无缺陷、无翘曲和凹痕、综合力学性能较好,拉伸强度、弯曲强度及弯曲弹性模量较小,断裂伸长率和缺口冲击强度较大。  相似文献   

16.
通过熔融浸渍包覆工艺,制备玻纤含量为40%的长玻纤增强聚丙烯复合材料(LGFRPP)粒料,选择注塑温度、注射压力以及注射速率作为试验的3个因子,将拉伸强度、弯曲强度及冲击强度作为评价指标,利用正交实验设计的方法对LGFRPP的注塑成型工艺进行了优化研究,研究了各注塑工艺对力学性能的影响,得到最佳注塑成型条件。研究结果表明,对拉伸性能影响最显著的是注射速率,对弯曲性能影响最显著的是注塑温度,对冲击强度影响最显著的是注射压力;采用综合平衡原则,结合拉伸、弯曲和冲击性能,得到含量为40%的LGFRPP复合材料的最佳注塑成型条件为注塑温度250℃,注射压力40 MPa,注射速度60%。在最佳工艺条件下,材料的拉伸强度为132. 02 MPa,弯曲强度为200. 38 MPa,冲击强度为59. 34 k J/m2。  相似文献   

17.
刘长华  孙国栋 《塑料》2013,(5):103-105
利用Moldflow软件,模拟了双分流道浇注系统下手机后盖零件的翘曲变形。同时,利用六因素三水平正交方法对翘曲变形量进行了分析和优化。结果表明:熔体温度对翘曲变形量影响较大,其次是最大注塑压力、保压方式和注射时间,模具表面温度和冷却时间对翘曲变形影响较小。通过工艺参数的组合,得到最佳的注塑工艺:模具表面温度为40℃,熔体温度为240℃,注射时间为2 s,最大注射压力150 MPa,冷却时间20 s,保压方式为三段保压。在此工艺下进行,得到的翘曲变形量为0.1238 mm,相对于优化前的变形量0.1814 mm,降低了31.8%。  相似文献   

18.
采用超临界CO_2微孔注塑成型工艺制备热塑性聚氨酯弹性体(TPU)微孔泡沫材料,研究超临界流体(SCF)注塑发泡工艺对TPU泡沫微观结构及力学性能的影响规律。本文基于正交优化实验设计,以制品拉伸强度为优化指标,优化微孔成型工艺参数。最优微孔注塑工艺为:注射量16 cm~3;SCF含量0.4%;注射速度60 cm~3/s;保压压力1 MPa。本文通过研究成型工艺对制品结构及力学性能的影响,为超临界CO_2制备高发泡率高性能TPU软质泡沫材料提供技术支持。  相似文献   

19.
《塑料》2019,(6)
针对汽车车标注塑成型时会产生缺陷的问题,对车标的注塑参数进行分析优化。首先运用Moldflow进行5因素4水平正交实验,然后通过层次分析法和S型隶属函数对3指标下的实验参数进行综合分析,使用极差分析法得到综合分析下模具温度、熔体温度、保压时间与保压压力、注射时间以及冷却时间5个注塑参数的最佳组合及其影响顺序,并通过Moldflow和实际注塑进行验证。结果表明,5因素在3指标下的综合影响程度为注射时间冷却时间熔体温度保压时间与保压压力模具温度。对注塑起主要决定作用的为注塑时间。最佳组合为模具温度55℃、最佳熔体温度230℃、最佳保压时间与保压压力为85%、最佳注塑时间为1. 4 s、最佳冷却时间为18 s。  相似文献   

20.
侯立军  吴大鸣  庄俭  吴智明 《塑料》2012,41(3):77-79,89
微换热器以换热表面大,易于加工成型为特点,因此受到广泛的重视。实验以制品质量为实验指标,采用正交试验的F值、极差等方法分别对微型散热器成型中的主要工艺参数(注射速度、注射压力、保压压力、保压时间、模具温度、冷却时间等)进行了优化,并讨论了注射速度与注射压力之间的交互作用,同时对制品的密度,以及制品的收缩进行了分析。实验结果表明:保压时间和保压压力,对制品的影响最显著;最佳工艺条件为:保压时间9 s,保压压力90 MPa,冷却时间35 s,背压15 MPa,模具温度40℃,注射速度300 mm/s,注射压力200 MPa;密度方法对于微型换热器的评价不是很显著。实验为微换热器的微注射成型提供有益的技术基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号