首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A characterization study of the main olive oil cultivars of southwest Spain (Picual, Arbequina, and Verdial) has been performed in order to establish logistic regression models. Several quality characteristics (free acidity, peroxide value, K232, K270, oxidative stability index) and chemical data (fatty acids, sterols, erythrodiol–uvaol composition) were measured. Logit regressions were used to evaluate the correlation of the parameters and to create models that allow saving costs on identifying oils as Arbequina, Picual, or Verdial type. Multiple logit regression models were developed: one for Arbequina, three models for Picual, and two models for Verdial cultivar, allowing in this way to minimize the cost for classifying oil samples. Practical application: The olive oil marketing is increasingly focused on the chemical differentiation and characterization of the product because the chemical composition of these virgin oils is responsible for their valuable sensory and nutritional properties. Here we present a characterization study (quality characteristics and chemical data) from the main olive oil cultivars of southwest Spain, Picual, Arbequina, and Verdial, as a first step for the traceability of these three types of monocultivar virgin olive oils. The results may be used as a training to create models for other olive oil cultivars.  相似文献   

2.
The characteristics of eight varieties of virgin olive oil (Arbosana, Arbequina, Coratina, Cornicabra, Frantoio, Koroneiki, Picual, and Ezhi 8) obtained in two successive crops in the southwest of China (Xichang, Sichuan Province) were investigated. Significant differences (P < 0.05) were observed in physicochemical properties, fatty acid profile, minor component contents, and oxidative stability between different varieties of olive oils. The physicochemical properties of all samples met IOC standards for extra virgin olive oil, while in Koroneiki, olive oils were present the optimum oxidation stability among studied varieties. The results of hierarchical cluster analysis and principal component analysis (PCA) showed a good classification between varieties based on their qualitative characteristics. Koroneiki and Ezhi 8 olive oils were significantly different from other varieties mainly due to color, fatty acid profile, and minor components. PCA result also showed that harvest crop influences the characteristics of samples mainly due to the variance of temperature and rainfall.  相似文献   

3.
There is a need to verify the quality of organically produced olive oils and to compare them to conventional ones. The objective of this study was to assess possible differences in nutritional quality between agronomic practices in Picual and Hojiblanca olive oil varieties at different stages of olive ripeness. The results showed that organic versus conventional cultivation did not consistently affect acidity, peroxide index or spectrophotometric constants of the virgin olive oils considered in this study. On the contrary, phenol content, oxidative stability, tocopherol content and fatty acid composition were affected by the agronomical practices. Principal component analysis indicated that linolenic acid and β‐tocopherol were mainly responsible for discriminating Hojiblanca organic oils, whereas total phenols, palmitoleic acid and α‐tocopherol were the major contributors to differentiating Picual conventional oils. Lignoceric and stearic acids were related to oils from unripe and ripe olive fruits, respectively. Long‐term experiments are required to confirm these results.  相似文献   

4.
Polyphenols of olive oil show autoprotective, sensory, and nutritional-therapeutic effects. Two new phenolic compounds have been isolated from virgin olive oils by preparative high-performance liquid chromatography and their structures established on the basis of their mass spectra and nuclear magnetic resonance spectral data. The compounds identified are the lignans pinoresinol and 1-acetoxypinoresinol. Both have been found in all the commercial virgin olive oils analyzed. Pinoresinol concentration was rather similar in all the oils. In contrast, 1-acetoxypinoresinol concentration was higher in oils of the Arbequina and Empeltre cultivars than in Picual or Picudo cultivars. Pinoresinol and 1-acetoxypinoresinol may represent the major phenolic compounds in some Arbequina and Empeltre oils. Lignans possess biological and pharmacological properties and, therefore, the two new compounds identified in olive oils may contribute to the reported beneficial effects which are attributed to polyphenols on human health of a diet rich in olive oil.  相似文献   

5.
The regulated physicochemical and sensory parameters, stability parameters and fatty acid, sterol and triterpenic dialcohol composition of the olive oils from the varieties Arbequina, Benizal, Cornicabra, Cuquillo, Injerta, Manzanilla de Sevilla, Manzanilla Local, Picual and Negrilla, grown in the Campos de Hellin, were analyzed. Regarding potential quality, all the oil samples were classified in the “extra virgin” category according to the regulated parameters. The oils from the varieties Cornicabra and Picual showed remarkably high stability, due to their high total phenol content. The oils from the Benizal variety stood out due to their high campesterol and low total sterol content, exceeding and not reaching, respectively, the limits set by European regulations. This seems to be an intrinsic characteristic of this variety. When the real quality was analyzed, two clearly differentiated groups were observed: on one hand, oils from the Arbequina variety, and on the other hand, oils from the Picual variety and oils mixed from different varieties (Blend). The great number of olive varieties grown in the Campos de Hellin area enables the production of better balanced oils, producing high quality blended oils since the mixing of different varieties may compensate the deficiencies of monovarietal oils.  相似文献   

6.
The purpose of this investigation was to study differences in the chlorophyll, carotenoid, and phenolic fractions of virgin olive oils from the Arbequina variety cultivated in different olive growing areas of Spain. Virgin olive oil from Lleida was less heavily pigmented, and these oils showed more negative values for the ordinate a* (of the CIELAB colorimetric system). Pheophytin a was the major chlorophyll pigment, and lutein was the major component of the carotenoid fraction in all oils analyzed. The chlorophyll a concentration in virgin olive oils from Lleida was 700 μg kg−1, but was 175 μg kg−1 in oils from Jaén, and 200 μg kg−1 in oils from Tarragona. Finally, the chlorophyll a/chlorophyll b ratio was 9 in oils from Lleida and around 0.6 in the other two Arbequina olive oils. In relation to the phenolic fraction, the hydroxytyrosol and tyrosol contents were significantly higher in olive oils from Jaén (grown at higher altitude and precipitation rates). The secoiridoid derivatives showed a significantly higher concentration in olive oils from Tarragona, probably due to the low altitude where they grow, and finally the ratio of (dialdehydic form of elenolic acid linked to tyrosol)/lignans had a value of 1.4 in olive oils from Lleida, whereas this value was around 0.7 in the other Arbequina olive oils.  相似文献   

7.
Six samples of virgin olive oil obtained from several varieties of olive fruits (Picual, Manzanilla, Lechín, and Arbequina) were submitted to an accelerated oxidation process during a 63-h period under the conditions of the oil stability index (OSI), as measured by a Rancimat (100°C) apparatus. Spectra were measured every 3 h, and chlorophyll and carotenoid indexes and CIFLAB color ordinates were calculated. As oxidation time increased, remarkable changes in the spectral characteristics and color ordinates were observed. Oxidation provoked less vivid colors (lower values for chroma, C * ab ) in all the samples; however, only some varieties became darker (lower values for lightness, L*). The pigment loss calculated for oxidized oils was 67% for the carotenoid index and 58% for the chlorophyll index. Mathematical models are offered to predict color changes with time of storage at 20°C.  相似文献   

8.
Fifteen genotypes coming from crosses between the cultivars Arbequina, Frantoio and Picual were selected on the basis of their agronomic characteristics in a breeding program initiated in 1991. In the present work, the main components of the olive oil of these 15 advances selections have been characterized and compared to their genitors. A wide range of variation was observed for all the fatty acids, minor components and related characteristics evaluated, with significant differences between genotypes for all of them except for β‐tocopherol content. These results confirm the strong genetic influence on olive oil quality previously reported on olive oil cultivar evaluations. The values obtained in the selections have extended the range of variation of their three genitors for all the characters evaluated, except for γ‐tocopherol. Selections UC‐I 7‐8, UC‐I 5‐44 and UC‐I 2‐68 showed the highest average values for tocopherols, polyphenol and C18:1 contents, respectively. Finally, multivariate analysis allowed the classification of genotypes in four groups according to their olive oil composition. Practical applications: Olive oil composition is considered one of the most important objectives in breeding programs aiming at obtaining new olive cultivars. In the last decades olive breeding programs are being carried out in the main olive‐producing countries and several new cultivars and advanced selections have been described. The results of this work provide an initial characterization of virgin olive oils of advanced selections coming from crosses between the cultivars Arbequina, Frantoio and Picual and suggest a strong genetic influence on fatty acid composition, several minor components and related characteristics. These results, together with the agronomic characterization of these selections previously reported, will be used for the final selection of the best genotypes to be registered as new cultivars.  相似文献   

9.
In this study, the effects of filtration on quality parameters, chemical characteristics, antioxidant activity, and oxidative stability (OS) of Turkish olive oils during the storage period of 12 months were investigated. The olive oil free acidity (% oleic acid per 100 g of olive oil) (free fatty acidity, FFA), peroxide values (PV) (meq O2 kg−1 oil), and UV spectrophotometric indices (K232 and K270 measurements) were used for evaluating the quality parameters of olive oils. α-tocopherol analysis, total phenolic content (TPC), total chlorophyll and carotenoid analyses, and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical-scavenging activity (RSA) assays were carried out. Chromatographic methods were applied to determine the fatty-acid and triacylglycerol (TAG) composition, the content of methyl and ethyl esters (FAEE and FAME), and the content of fatty acids of olive oils. Univariate and multivariate statistical methods were performed to evaluate results. Univariate data analysis results showed that filtration of Ayvalık, Memecik, and Domat olive oils had no considerable influence on quality parameters, antioxidant compounds, FAEE and FAME, antioxidant activity, and OS, except TPC (P < 0.05). A significant difference between the samples was determined regarding storage times of the olive oils. Principal component analysis (PCA) analysis revealed that olive oils were grouped according to storage periods of the olive oils regarding fatty-acid and triacylglycerol (TAG) composition while there was no clear separation among the samples according to the filtration process. However, qualitative and quantitative changes took place on minor and major components of olive oils during the storage period.  相似文献   

10.
Phenolic compounds are of fundamental importance to the quality and nutritional properties of virgin olive oils. In this paper, the high-performance liquid chromatographic analysis of simple and complex olive oil phenols in the streams generated in the two-phase extraction system was carried out using Arbequina and Picual olives. The malaxation stage reduced the concentration of orthodiphenols in oil ca 50–70%, while the concentration of the nonorthodiphenols remained constant, particularly the recently identified lignans 1-acetoxypinoresinol and pinoresinol. Oxidation of orthodiphenols at laboratory scale was avoided by malaxing the paste under a nitrogen atmosphere. Phenolic compounds in the wash water used in the vertical centrifuge were also identified. Hydroxytyrosol, tyrosol, the dialdehydic form of elenolic acid linked to hydroxytyrosol were the most representative phenols in these waters. Hence, phenolic compounds in the wash waters came from both the aqueous and the lipid phases of the decanter oily must.  相似文献   

11.
Storage conditions influence the maximum time for which the composition and sensory characteristics of olive oils can be guaranteed. The purpose of this research was to study the quality and phenol content of extra virgin olive oil (EVOO) after storage for 1 year in different types of containers under darkness or light. Three Spanish cultivars with quantitatively different phenol contents were selected for the study. Storage under light conditions impaired the physicochemical and sensorial properties of the three cultivars, and reduced total phenolics, but there was an increase in hydroxytyrosol and tyrosol concentrations. It also markedly decreased their total phenolic content, especially when kept in polyethylene containers exposed to light, with reductions ranging from 4.28% for vanillic acid in Picual oils stored in dark glass containers under dark conditions to 97.82% for ferulic acid in Arbequina oils stored in polyethylene containers under light conditions. There was a reduced concentration of flavonoid and lignan concentrations after 1 year of storage, with the greatest decrease (98.01% of initial content) being observed for in the flavonoid apigenin. These results indicate that EVOO should be stored in dark glass containers under dark conditions for the optimal preservation of its quality and phenol content.  相似文献   

12.
The use of four concentrations of common salt (NaCl) used as coadjuvant for the extraction of virgin olive oil has been tested on a laboratory scale and the quality attributes of the oils obtained were compared to those obtained with talc as coadjuvant. The oils extracted from Picual fruits after NaCl addition were not significantly affected in terms of the physicochemical requirements established for extra virgin olive oil, the best level of quality of this produce. Addition of NaCl during the extraction process was positively correlated with the presence of o-diphenol compounds and the stability of the oils obtained. Moreover the use of NaCl resulted in a significant increase in contents of pigments (β-carotene, lutein and chlorophylls a and b) and volatile compounds in the oils.  相似文献   

13.
Extra virgin olive oils were extracted from six different major olive cultivars (Gemlik, Ayvalik, Domat, Akhisar, Memecik, Arbequina) cultivated in the Aegean region of Turkey. Fatty acid, sterol and tocopherol compositions were analyzed and the results were compared by multivariate statistical analysis. Olive samples were collected from the same orchard in order to limit the contribution of parameters such as climate, soil quality and agricultural practices to the total variance of chemical composition of olive oils. Principal component analysis (PCA) showed that cultivars can be clearly distinguished on the basis of fatty acid and sterol composition. It is of interest to note that palmitoleic acid content of Arbequina, a Spanish cultivar, is significantly (p < 0.05) higher than the local Turkish cultivars in question and it is the only olive sample whose palmitoleic acid concentration is higher than that of the stearic acid concentration, exhibiting a divergent composition from the local Turkish cultivars. β‐Sitosterol and Δ5‐avenasterol contents of the oils are significantly correlated (r = ?0.989, p < 0.05) and this results in a discriminative axis on the PCA loading plot. Tocopherol composition was relatively insufficient in discriminating the olive varieties. Regarding tocopherol compositions Gemlik cultivar is distinguished from other cultivars with its γ‐tocopherol content, which is in average two times higher than that of other cultivars. The result of the present compositional study provides important data which can be used for olive oil authenticity studies in Turkey.  相似文献   

14.
In this study, the quality characteristics, i.e., the acidity and acylglycerols, of currently produced Mallorcan oil was analyzed by titration and gas-chromatographic technique, respectively, in approximately 400 samples of monovarietal olive oil made from three genetic varieties (Arbequina, Empeltre, and Picual) on the island of Mallorca during the 2003/2004 and 2005/2006 seasons, and the differences in the compositions were discussed. Composition analysis showed that free fatty acids (FFAs) and DAGs were produced mainly by hydrolysis of triacylglycerols (TAGs). Fruit storage tests revealed that hydrolysis occurred during storage of olive fruits. The DAG content was higher in oil with higher acidity, but the maximal DAG content was only about 10 with 30% acidity, and the primary isomer found in Mallorcan oil was 1,3-DAG. However, the chiral-chromatographic study on the ratio of sn-1,2-DAG to the sum of sn-1,2-DAG and sn-2,3-DAG in a slightly hydrolyzed oil sample indicated that Empeltre and Picual fruits possess an sn-3-enantioselective lipase that leads to accumulation of sn-1,2-DAG. In currently produced Mallorcan oil, significant isomerization appears to occur and hydrolysis of the resulting 1,3-DAGs seems to lessen DAG accumulation.  相似文献   

15.
The phenolic composition and antioxidant activity of several monovarietal extra virgin olive oils used as blenders for the production of Collina di Brindisi protected designation of origin (PDO) oil, produced between December 2008 and January 2009 using two‐phases or three‐phases extraction system, were evaluated and compared with other manufacturer products designated as PDO. Oils were taken from the most representative ones industrial oil mills in the PDO geographical area. The parameters assessed were free acidity, peroxide value, K232 and K270 indices, organoleptic characteristics, total phenolic content (TPC), phenolic profile, and antioxidant activity coefficient (AAC). The phenolic contents and profiles of the monovarietal oils showed remarkable differences with respect to PDO oils. The variables that exerted a major influence on phenols concentration were the maturity degree of olives (December>January), followed by the extraction system (two‐phase>three‐phase), and place of growing. The Pearson r correlation index showed that AAC was positively correlated with TPC, p‐coumarate, and 3,4‐DHPEA‐EA, and negatively correlated with peroxide value. Practical applications: The results provide detailed information about: (i) the phenolic composition and the AAC of several monovarietal extra virgin olive oils used as blenders for the production of a PDO oil; (ii) the impact of genetic variability, place of growing, olive maturity degree, and extraction technology on oil phenol compounds; and (iii) the relationships among each phenolic compound and AAC, and their potential utilization as analytical index of antioxidant activity. It is important to study the phenolic compounds and antioxidant activity of monovarietal extra virgin olive oils used to produce PDO oil and to compare with the relative PDO samples in order to define a possible analytical tool able to verify what is stated in the label for consumer information and protection.  相似文献   

16.
Extra virgin olive oil is produced in the form of a “suspension–dispersion” which can persist for several months before full deposition of a residue. Many consumers and chefs prefer unfiltered raw olive oil because it looks thicker and richer in flavors. The nature of the material in the suspension–dispersion is poorly described. The presence of proteins has been connected with the appearance of the “veiled” oil and also with its oxidative stability, although there are discrepancies in the literature with regard to their levels. The level of phosphorus, a measure of phospholipids, is also poorly studied. This work aims at quantifying proteins and phospholipids in cloudy olive oil. For the analysis of proteins, a practical method is used that can be applied for routine analysis. The proteins are precipitated with acetone and determined colorimetrically using the Bradford method suitably modified to measure protein dye‐binding at low concentrations. Twenty three virgin and one refined olive oil samples from different places in Greece were all found to have protein levels below 2.5 mg/kg. In most of the samples, values were lower after filtration of the cloudy oils. In the refined oil samples, protein was hardly determined (value ≤0.1 mg/kg). Phosphorus levels ranged from 0.8 to 4.8 mg/kg. These correspond to approximately 21–124 mg/kg of phospholipids. The results are discussed in relation to the oxidative and physicochemical stability of the veiled oils.  相似文献   

17.
The present study was carried out on 12 virgin olive oils to determine whether one year's storage under mild conditions of 15°C and darkness affected the initial pigment composition of recently extracted virgin olive oil. Although the total pigment content remained constant, the individual contribution of each pigment changed. The acid compounds liberated from the fruits during the oil extraction process promote the beginning of chlorophyll pheophytinization and the isomerization of the 5,6-epoxide groups of the minor xanthophylls. During the first 3 mon of storage, there was a generalized increase in pheophytinization that was different for each oil (P<0.01, Duncan test) but was not correlated with the free acidity measured in them. At the same time, isomerized xanthophylls and allomerized pheophytins increased slightly. Following this stage, pyropheophytin a (a pigment not present in the initial oils), was detected; its concentration increased during storage. There were no significant differences in the final percentages of pyropheophytin a among the 12 oils, and the concentration of this new compound represented around 3% of the chlorophyll fraction. The pheophytin a/pyropheophytin a ratio always exceeded 20. All these small pigment transformations were signs that the oil had been stored. The content and class of pigments present in virgin olive oil are authentic indicators of its history prior to marketing.  相似文献   

18.
One of the main challenges that virgin olive oil producers face today is an accurate prediction of the sensory quality of the final product prior to the milling of the olives. The possibility that olive paste aroma can be used as a predictive measurement of virgin olive oil quality is studied in this paper. The study was centered on distinguishing the aroma of olive pastes that produced virgin olive oils without sensory defects from the aroma of olive pastes the virgin olive oils of which showed sensory defects. Olive pastes were analyzed by solid‐phase microextraction‐gas chromatography and a sensor system based on metal oxide sensors. Forty‐four volatile compounds were identified in olive pastes, all of them being also present in virgin olive oil. Six volatile compounds – acetic acid, octane, methyl benzene, (E)‐2‐hexenal, hexyl acetate and 3‐methyl‐1‐butanol – distinguished both kinds of pastes with only five misclassified samples. Five metal oxide sensors were able to classify the olive pastes with only two erroneous classifications.  相似文献   

19.
The evaluation and characterization of segregating populations is a critical step in olive breeding programs. In this work, phenolic profiles of virgin olive oils (VOOs) from segregating populations obtained by cross breeding in Cordoba (Spain) have been evaluated. Genotypes obtained from open pollination of the cultivar Manzanilla de Sevilla, and from crosses between the cultivars Arbequina × Arbosana, Picual × Koroneiki and Sikitita × Arbosana were tested. The phenolic composition was determined after liquid–liquid extraction with 60:40 v/v methanol–water and subsequent chromatographic analysis with ultraviolet (UV) detection of both absorption and fluorescence in a sequential configuration. Results for all studied compounds showed high degree of variability between genotypes, with a higher range of variation than the observed for the genitors. Most of the observed variability was attributable to differences in genotypes within crosses rather than among crosses. Some issues related to breeding strategies are discussed. Practical applications: Phenolic compounds are considered to be of paramount importance for the assessment of virgin olive oil quality due to their contribution to the nutraceutical and sensory profile of this natural food. This study focuses on the evaluation of the content of phenolic compounds in olive oils originated from cross breeding in an olive breeding program (Cordoba, Spain). This step is crucial to determine the range of variation of phenolic compounds and the selection of interesting genotypes with higher composition in total phenols or in an individual phenol targeted at a breeding program.  相似文献   

20.
In this study we have examined the effect of olive oil storage outdoors on a comprehensive series of quality measures. The conditions used were at the extreme of those encountered during the production of bottle oil. Filtered and unfiltered oils were compared as was the influence of inert gas (nitrogen) in the headspace. Increases in K232, K270 and peroxides over time were very much reduced by inert headspace gas, which also reduced losses of total phenols and oxidative stability. Headspace nitrogen also reduced the rise in unconjugated phenolics as secoiridoid derivatives declined and minimised losses in polyunsaturated fatty acids. The pattern of volatile compounds detected in olive oils stored indoors or outdoors showed subtle differences. Moreover, when stored with air exposure the levels of some negative sensory components such as penten‐3‐ol and hexanal increased while other positives, like trans‐2‐hexenal were reduced. These changes would be expected to reduce quality. Finally, Panel tests were used. All oils lost perceived quality on storage and this was accelerated outdoors while headspace nitrogen slowed the deterioration significantly. Our data show that storage outdoors for 4 months in winter does not reduce olive oil quality significantly and that an inert gas in the headspace is beneficial. Practical applications : The storage of olive oil for bottling is carried out under a variety of conditions. Here we assess the effects of storage outdoors for oils from the main Greek cultivar (Koroneiki) of olive. Detailed analyses of quality (standard measures, different phenolics, lipids and volatiles) as well as Panel tests were used for evaluation. Our data show that, although storage outdoors causes deterioration quicker than indoors, changes are not serious up to 4 months. Furthermore, the use of an inert headspace gas significantly preserved quality both indoors and outdoors. Thus we would strongly recommend the latter measure to producers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号