首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A ternary blend system comprising poly(cyclohexyl methacrylate) (PCHMA), poly(α‐methyl styrene) (PαMS) and poly(4‐methyl styrene) (P4MS) was investigated by thermal analysis, optical and scanning electron microscopy. Ternary phase behaviour was compared with the behaviour for the three constituent binary pairs. This study showed that the ternary blends of PCHMA/PαMS/P4MS in most compositions were miscible, with an apparent glass transition temperature (Tg) and distinct cloud‐point transitions, which were located at lower temperatures than their binary counterparts. However, in a closed‐loop range of compositions roughly near the centre of the triangular phase diagram, some ternary blends displayed phase separation with heterogeneity domains of about 1 µm. Therefore, it is properly concluded that ternary PCHMA/PαMS/P4M is partially miscible with a small closed‐loop immisciblity range, even though all the constituent binary pairs are fully miscible. Thermodynamic backgrounds leading to decreased miscibility and greater heterogeneity in a ternary polymer system in comparison with the binary counterparts are discussed. © 2003 Society of Chemical Industry  相似文献   

2.
Poly(methyl methacrylate) (PMMA) was γ‐irradiated (5–20 kGy) by a 137Cs source at room temperature in air. The changes in the molecular structure attributed to γ‐irradiation were studied by mechanical testing (flexure and hardness), size‐exclusion chromatography, differential scanning calorimetry, thermal gravimetric analysis, and both Fourier transform infrared and solution 13C‐NMR spectroscopy. Scanning electron microscopy was used to investigate the influence of the dose of γ rays on the fracture behavior of PMMA. The experimental results confirm that the PMMA degradation process involves chain scission. It was also observed that PMMA presents a brittle fracture mechanism and modifications in the color, becoming yellowish. The mechanical property curves show a similar pattern when the γ‐radiation dose increases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 886–895, 2002  相似文献   

3.
In the present study the derivatization of two water‐soluble synthetic polymers, α,β‐poly(N‐2‐hydroxyethyl)‐DL ‐aspartamide (PHEA) and α,β‐polyasparthylhydrazide (PAHy), with glycidyltrimethylammonium chloride (GTA) is described. This reaction permits the introduction of positive charges in the macromolecular chains of PHEA and PAHy in order to make easier the electrostatic interaction with DNA. Different parameters affect the reaction of derivatization, such as GTA concentration and reaction time. PHEA reacts partially and slowly with GTA; on the contrary the reaction of PAHy with GTA is more rapid and extensive. The derivatization of PHEA and PAHy with GTA is a convenient method to introduce positive groups in their chains and it permits the preparation of interpolyelectrolyte complexes with DNA. © 2000 Society of Chemical Industry  相似文献   

4.
The fullerene grafted poly(ε‐caprolactone) (PCL) was successfully synthesized with a graft efficiency of 80%. The fullerene moieties grafted onto the PCL chain aggregate into 1–2 μm particles so that a physical pseudo‐network is formed. Because of the existence of the network structure, the fullerene grafted PCL film can retain its shape at much higher temperatures than that of pure PCL film, as observed in dynamic mechanical tests. It shows a hydrophobic gelling behavior in chloroform solution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Biodegradable polyrotaxane‐based triblock copolymers were synthesized via the bulk atom transfer radical polymerization (ATRP) of n‐butyl methacrylate (BMA) initiated with polypseudo‐rotaxanes (PPRs) built from a distal 2‐bromoisobutyryl end‐capped poly(ε‐caprolactone) (Br‐PCL‐Br) with α‐cyclodextrins (α‐CDs) in the presence of Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine at 45 ºC. The structure was characterized in detail by means of 1H NMR, gel permeation chromatography, wide‐angle X‐ray diffraction, DSC and TGA. When the feed molar ratio of BMA to Br‐PCL‐Br was changed from 128 to 300, the degree of polymerization of PBMA blocks attached to two ends of the PPRs was in the range 382 ? 803. Although about a tenth of the added α‐CDs were still threaded onto the PCL chain after the ATRP process, the movable α‐CDs made a marked contribution to the mechanical strength enhancement, blood anticoagulation activity and protein adsorption repellency of the resulting copolymers. Meanwhile, they could also protect the copolymers from the attack of H2O and Lipase AK Amano molecules, exhibiting a lower mass loss as evidenced in hydrolytic and enzymatic degradation experiments. © 2013 Society of Chemical Industry  相似文献   

6.
2,5‐Dibromo‐1,4‐(dihydroxymethyl)benzene was used as initiator in ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate (Sn(Oct)2) catalyst. The resulting poly(ε‐caprolactone) (PCL) macromonomer, with a central 2,5‐dibromo‐1,4‐diphenylene group, was used in combination with 1,4‐dibromo‐2,5‐dimethylbenzene for a Suzuki coupling in the presence of Pd(PPh3)4 as catalyst or using the system NiCl2/bpy/PPh3/Zn for a Yamamoto‐type polymerization. The poly(p‐phenylenes) (PPP) obtained, with PCL side chains, have solubility properties similar to those of the starting macromonomer, ie soluble in common organic solvents at room temperature. The new polymers were characterized by 1H and 13C NMR and UV spectroscopy and also by GPC measurements. The thermal behaviour of the precursor PCL macromonomer and the final poly(p‐phenylene)‐graft‐poly(ε‐caprolactone) copolymers were investigated by thermogravimetric analysis and differential scanning calorimetry analyses and compared. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
Poly(ethyl α‐benzoyloxymethylacrylate) (EBMA) and copolymers of methyl methacrylate (MMA) with EBMA have been prepared by free radical polymerization. Monomer precursors of ethyl α‐benzoyloxymethylacrylate have likewise been polymerized. Glass transition temperatures (Tg) of homo and copolymers have been determined by differential scanning calorimetry. The Johnston equation, which considers the influence of monomeric unit distribution on the copolymer glass transition temperature, has been used to explain the Tg behaviour. Tg12 has been calculated by the application of the Johnston equation, which gave a value markedly lower than the average value expected from the additive contribution of the Tg of the corresponding homopolymers. © 2000 Society of Chemical Industry  相似文献   

8.
Miscible polymer blends based on various ratios of poly(vinyl acetate) (PVAc) and poly(methyl methacrylate) (PMMA) were prepared in film form by the solution casting technique using benzene as a common solvent. The thermal decomposition behavior of these blends and their individual homopolymers before and after γ‐irradiation at various doses (50–250 kGy) was investigated. The thermogravimetric analysis technique was utilized to determine the temperatures at which the maximum value of the rate of reaction (Tmax) occurs and the kinetic parameters of the thermal decomposition. The rate of reaction curves of the individual homopolymers or their blends before or after γ‐ irradiation displayed similar trends in which the Tmax corresponding to all polymers was found to exist in the same position but with different values. These findings and the visual observations of the blend solutions and the transparency of the films gave support to the complete miscibility of these blends. Three transitions were observed along the reaction rate versus temperature curves; the first was around 100–200°C with no defined Tmax, which may arise from the evaporation of the solvent. The second Tmax was in the 340–380°C range, which depended on the polymer blend and the γ‐irradiation condition. A third transition was seen in the rate of reaction curves only for pure PVAc and its blends with PMMA with ratios up to 50%, regardless of γ‐ irradiation. We concluded that γ‐irradiation improved the thermal stability of PVAc/PMMA blends, even though the PMMA polymer was degradable by γ irradiation. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1773–1780, 2006  相似文献   

9.
A novel synthesis path for the monotelechelic polydimethylsiloxane with a diol‐end group, α‐butyl‐omega‐{3‐[2‐hydroxy‐3‐(N‐methyl‐N‐hydroxyethylamino)propoxy]propyl}polydimethylsiloxane, is described in this article. The preparation included three steps, which were anionic ring‐opening polymerization, hydrosilylation, and epoxy addition. The structure and polydispersity index of the products were analyzed and confirmed by FTIR, 1H NMR, 13C NMR, H? H, and C? H. Correlated Spectroscopy and gel permeation chromatography. The results demonstrated that each step was successfully carried out and the targeted products were accessed in all cases. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
We have investigated the interface formation of Ca with poly(p-phenylene α,α′-diphenyl vinylene) (PPV-DP) and poly(p-phenylene α-phenyl vinylene) (PPV-P) using X-ray photoemission spectroscopy (XPS). Similarly to our earlier findings in metal/PPV interface formation, the O 1s peak shifted toward a lower binding energy as soon as Ca was deposited on to the polymers. This was accompanied by the formation of Ca? O, suggesting a chemical origin for the O 1s shift. By contrast, the C 1s peak shift toward a lower binding energy was observed relatively later, after about 4 Å of Ca deposition. At the same time, a new C 1s component became noticable at about ?1.5 eV relative to the initial C 1s peak. This component signifies the possibility of polymer disruption by the Ca atoms to form Ca? C species. The C 1s peak shift is attributed to Ca induced surface band bending and barrier formation as in the case of metal/PPV interface formation. The disruption of the polymer may also induce changes in the interface electronic states and contribute to the C 1s peak shift. From the intensity attenuation analysis, we conclude that the initial 15 Å of Ca overlayer is contaminated by the Ca? O and Ca? C species and the overlayer is pure beyond 15 Å of Ca coverage.  相似文献   

11.
Poly(β‐pinene) was brominated by N‐bromosuccinimide on the allylic carbons. Then the brominated product was activated by AlEt2Cl to initiate the polymerization of styrene to give a β‐pinene/styrene graft copolymer. AlEt2Cl was selected because it alone could not initiate the polymerization of styrene. The obtained graft copolymer was characterized by GPC, 1H‐NMR, and DSC measurements, respectively. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 599–603, 2000  相似文献   

12.
The aim of the study was to investigate the mechanical properties and biodegradability of poly(trimethylenecarbonate‐ε‐caprolactone)‐block‐poly(p‐dioxanone) [P(TMC‐ε‐CL)‐block‐PDO] in comparison with poly(p‐dioxanone) and poly(glycolide‐ε‐caprolactone) (Monocryl®) monofilaments in vivo and in vitro. P(TMC‐ε‐CL)‐block‐PDO copolymer and poly(p‐dioxanone) were prepared by using ring‐opening polymerization reaction. The monofilament fibers were obtained using conventional melt spun methods. The physicochemical and mechanical properties, such as viscosity, molecular weight, crystallinity, and knot security, were studied. Tensile strength, breaking strength retention, and surface morphology of P(TMC‐ε‐CL)‐block‐PDO, poly(p‐dioxanone), and Monocryl monofilament fibers were studied by immersion in phosphate‐buffered distilled water (pH 7.2) at 37°C and in vivo. The implantation studies of absorbable suture strands were performed in gluteal muscle of rats. The polymers, P(TMC‐ε‐CL)‐block‐PDO, poly(p‐dioxanone), and Monocryl, were semicrystalline and showed 27, 32, and 34% crystallinity, respectively. Those mechanical properties of P(TMC‐ε‐CL)‐block‐PDO were comparatively lower than other polymers. The biodegradability of poly(dioxanone) homopolymer is much slower compared with that of two copolymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 737–743, 2006  相似文献   

13.
The morphological development and crystallization behavior of poly(?‐caprolactone) (PCL) in miscible mixtures of PCL and poly(vinyl methyl ether) (PVME) were investigated by optical microscopy as a function of the mixture composition and crystallization temperature. The results indicated that the degree of crystallinity of PCL was independent of the mixture composition upon melt crystallization because the glass‐transition temperatures of the mixtures were much lower than the crystallization temperature of PCL. The radii of the PCL spherulites increased linearly with time at crystallization temperatures ranging from 42 to 49°C. The isothermal growth rates of PCL spherulites decreased with the amount of the amorphous PVME components in the mixtures. Accounting for the miscibility of PCL/PVME mixtures, the radial growth rates of PCL spherulites were well described by a kinetic equation involving the Flory–Huggins interaction parameter and the free energy for the nuclei formation in such a way that the theoretical calculations were in good agreement with the experimental data. From the analysis of the equilibrium melting point depression, the interaction energy density of the PVME/PCL system was calculated to be ?3.95 J/cm3. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
Poly(vinyl alcohol)‐initiated microwave‐assisted ring opening polymerization of ε‐caprolactone in bulk was investigated, and a series of poly(vinyl alcohol)‐graft‐poly(ε‐caprolactone) (PVA‐g‐PCL) copolymers were prepared, with the degree of polymerization (DP) of PCL side chains and the degree of substitution (DS) of PVA by PCL being in the range of 3–24 and 0.35–0.89, respectively. The resultant comb‐like PVA‐g‐PCL copolymers were confirmed by means of FTIR, 1H NMR, and viscometry measurement. The introduction of hydrophilic backbone resulted in the decrease in both melting point and crystallization property of the PVA‐g‐PCL copolymers comparing with linear PCL. With higher microwave power, the DP of PCL side chains and DS of PVA backbone were higher, and the polymerization reaction proceeded more rapidly. Both the DP and monomer conversion increased with irradiation time, while the DS increased first and then remained constant. With initiator in low concentration, the DP and DS were higher, while the monomer was converted more slowly. Microwaves dramatically improved the polymerization reaction in comparison of conventional heating method. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104, 3973–3979, 2007  相似文献   

15.
Two series of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) triblock copolymers were prepared by the ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) and dibutylmagnesium in 1,4‐dioxane solution at 70°C. The triblock structure and molecular weight of the copolymers were analyzed and confirmed by 1H NMR, 13C NMR, FTIR, and gel permeation chromatography. The crystallization and thermal properties of the copolymers were investigated by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers. Crystallization exothermal peaks (Tc) and melting endothermic peaks (Tm) of PEG block were significantly influenced by the relative length of PCL blocks, due to the hindrance of the lateral PCL blocks. With increasing of the length of PCL blocks, the diffraction and the melting peak of PEG block disappeared gradually in the WAXD patterns and DSC curves, respectively. In contrast, the crystallization of PCL blocks was not suppressed by the middle PEG block. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Poly(ε‐caprolactone)/poly(ε‐caprolactone‐co‐lactide) (PCL/PLCL) blend filaments with various ratios of PCL and PLCL were prepared by melt spinning. The effect of PLCL content on the physical properties of the blended filament was investigated. The melt spinning of the blend was carried out and the as spun filament was subsequently subjected to drawing and heat setting process. The addition of PLCL caused significant changes in the mechanical properties of the filaments. Crystallinity of blend decreased with the addition of PLCL as observed by X‐ray diffraction (XRD) and differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) revealed that the fracture surface becomes rougher at higher PLCL content. It may be proposed that PCL and PLCL show limited interaction within the blend matrix. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Poly(α‐hydroxy acrylic acid) (PHA) and poly(acrylicacid) (PAA) gels were prepared by irradiating the respective 15 wt% aqueous solutions with γ‐rays. Swelling ratios for PHA gel were measured as a function of pH and divalent cation (Mg2+, Ca2+, Mn2+, Co2+, Ni2+, Cu2+) concentration C2 in the external solution to provide a comparison with the results for PAA gels. It was found that the swelling ratio of PHA gel steeply increases between pH 2 and 4, followed by a gradual swelling in the higher pH region. The corresponding steep swelling of PAA gel was observed at pH 3–6. Cation specificity in the equilibrium swelling ratio at a lower C2 value (1.0 × 10−3 M) was approximately consistent with the binding selectivity in the solution system. Typically, the swelling ratio of PHA gel in the presence of Ca2+ was significantly lower than in the Mg2+ system, while the difference was slight for PAA gel. The response of the swelling ratio to changes in pH and C2 was analysed as a first order relaxation to estimate the time constants. The (de)swelling kinetics measured by both the pH and C2 jump were qualitatively interpreted in terms of main‐chain stiffness and intermolecular hydrogen bonding in the respective polymers. © 2000 Society of Chemical Industry  相似文献   

18.
In polymer blends, the composition and microcrystalline structure of the blend near surfaces can be markedly different from the bulk properties. In this study, the enzymatic degradation of poly(ε‐caprolactone) (PCL) and its blends with poly(styrene‐co‐acrylonitrile) (SAN) was conducted in a phosphate buffer solution containing Pseudomonas lipase, and the degradation behavior was correlated with the surface properties and crystalline microstructure of the blends. The enzymatic degradation preferentially took place at the amorphous part of PCL film. The melt‐quenched PCL film with low crystallinity and small lamellar thickness showed a higher degradation rate compared with isothermally crystallized (at 36, 40, and 44°C) PCL films. Also, there was a vast difference in the enzymatic degradation behavior of pure PCL and PCL/SAN blends. The pure PCL showed 100% weight loss in a very short time (i.e., 72 h), whereas the PCL/SAN blend containing just 1% SAN showed ~50% weight loss and the degradation ceased, and the blend containing 40% SAN showed almost no weight loss. These results suggest that as degradation proceeds, the nondegradable SAN content increases at the surface of PCL/SAN films and prevents the lipase from attacking the biodegradable PCL chains. This phenomenon was observed even for a very high PCL content in the blend samples. In the blend with low PCL content, the inaccessibility of the amorphous interphase with high SAN content prevented the attack of lipase on the lamellae of PCL. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 868–879, 2002  相似文献   

19.
Biodegradable polyurethane (PU) elastomers with potential for biomedical and industrial applications were synthesized by the reaction of poly(ε‐caprolactone) (PCL) and isophorone diisocyanate (IPDI), extended with different mass ratio of chitosan and 1,4‐butane diol (BDO). Their chemical structures were characterized using FTIR, 1HNMR, and 13CNMR, and thermal properties were determined by TGA and DMTA. Incorporation of chitosan contents into the polyurethane backbone caused improvement in thermal stability and thermal degradation rate. Optimum thermal properties and degradation profile were obtained from elastomer extended with chitosan. The crystallinity and hydrophilicity of the prepared polymers were also examined by X‐ray and contact angle measurements. The results showed that hydrophilicity decreased and crystallinity increased with increasing of chitosan content in polyurethane backbone. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Atactic poly(3‐hydroxybutyrate) (a‐PHB) and block copolymers of poly(ethylene glycol) (PEG) with poly(ε‐caprolactone) (PCL‐b‐PEG) were synthesized through anionic polymerization and coordination polymerization, respectively. As demonstrated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) measurements, both chemosynthesized a‐PHB and biosynthesized isotactic PHB (i‐PHB) are miscible with the PEG segment phase of PCL‐b‐PEGs. However, there is no evidence showing miscibility between both PHBs and the PCL segment phase of the copolymer even though PCL has been block‐copolymerized with PEG. Based on these results, PCL‐b‐PEG was added, as a compatibilizer, to both the PCL/a‐PHB blends and the PCL i‐PHB blends. The blend films were obtained through the evaporation of chloroform solutions of mixed components. Excitingly, the improvement in mechanical properties of PCL/PHB blends was achieved as anticipated initially upon the addition of PCL‐b‐PEG. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 2600–2608, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号