首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In order to assess the performance of drowning‐out crystallization using a T‐mixer, nucleation and supersaturation were studied. The particle size was changed considerably with the solvent fraction and the feed rate, which were the main parameters controlling the supersaturation. At S = 1.7, the boundary point between homogeneous and heterogeneous nucleations was found from a log‐log plot of supersaturation rate versus maximum supersaturation. Drowning‐out crystallization using a T‐mixer could easily generate high supersaturations of up to 50, which were adjusted by the feed rate and the ratio of solvent to antisolvent. Nano‐ and micron‐sized particles can be prepared by drowning‐out crystallization using a T‐mixer.  相似文献   

2.
A study of gas‐liquid reactive crystallization for CO2‐BaCl2‐H2O system was performed in a continuous flow crystallizer. The influences of mixing on the crystallization kinetics of barium carbonate crystals were investigated. The mixing parameters are stirrer speed, feed concentration, gas‐flow rate, pH of solution, addition rate of NaOH solution, and mean residence time. Under pH‐stat operation, the crystallization mechanism can be assessed by the addition rate of NaOH solution, which acts as an indicator for the absorption rate of carbon dioxide. Assuming a size‐independent agglomeration mechanism, the nucleation rate, growth rate and agglomeration kernel can be obtained, simultaneously, at steady state, by the method of moments. Evidence shows that feed concentration, feed rate, gas‐flow rate, and stirrer speed have a significant influence on the nucleation rates and mean particle sizes. This shows the effect of micromixing. The crystallization mechanism tends to be reaction limited when the feed concentration of barium chloride solution is higher than 5 mM, while at lower stirrer speeds and feed concentrations, the mechanism tends to be both mixing and reaction controlled. The growth rate depends on the mean supersaturation value and the pH of the solution and the mass‐transfer resistance cannot be completely eliminated in this work. For a monodispersal collision model, in the viscous sub‐range of turbulence, the agglomeration kernel can be expressed as β ∝ d3 –1/4, showing a low efficiency of collision. The result is also demonstrated by the agglomeration kernel expression. Comparison with a liquid‐liquid‐mixing reactive crystallization system is also discussed.  相似文献   

3.
A process for continuous synthesis of cross‐linked chitosan‐sodium tripolyphosphate (CS‐TPP) nanoparticles is optimized using microreactors for its comparison with a batch stirred reactor. The effect of various parameters including residence time, concentration of CS, pH of the CS solutions, and stabilizing surfactant concentration was modeled by population balance equations (PBEs) to determine size, growth, and nucleation rates of the CS‐TPP nanoparticles. The smallest particle size was obtained at lower residence time, lower concentration of CS, pH 5, and using a surfactant concentration above its critical micellar concentration. The particles obtained from the microreactors are agglomerated but are smaller in size as compared to those obtained from the batch reactor. The system was also optimized for the minimum particle size applying the estimated growth rate and the PBEs.  相似文献   

4.
Boron nitride (BN), talc, hydroxyapatite (HA), and zinc stearate (ZnSt) were investigated as nucleation agents (NA) for nonfossil‐based poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) plastics. Nonisothermal crystallization behaviors of the P3/4HB/NA blends were examined by DSC. It revealed that BN is the most efficient nucleation agent to promote the crystallization rate, however, but not the crystallization degree. The lasting crystallization of P3/4HB was also removed. The nucleation effect was strengthened with increase of BN content up to 1% and then slackened deeply when further BN was added. Isothermal crystallization analysis revealed that the addition of nucleation agent BN does not alter the crystal growth mode of P3/4HB, with maintaining the Avrami parameter n value around 2.40. Talc did enhance the crystallization of P3/4HB with however milder crystal growth rate. HA and ZnSt did not promote, but depressed the crystallization of P3/4HB plastics. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The non‐isothermal crystallization of poly(ethylene oxide) (PEO)/silver nanoplate composites was studied using differential scanning calorimetry. The non‐isothermal crystallization was analyzed by combining the Avrami and Ozawa equations. It was found that the Avrami exponent for neat PEO ranges from 2.51 to 2.53, whereas it ranges from 2.54 to 3.16 for its composites, indicating that the spherical crystal morphology does not change with the addition of nanoplates. However, the rate determination of crystal growth transfers from diffusion to nucleation. The crystallization half‐time showed an increase with the addition of silver nanoplates in PEO, indicating that the overall crystallization rate of PEO decreases with the addition of nanoplates. However, the nucleation activity is larger than unity in the composites and the value increases with an increase in the nanoplate content. This behavior implies that the nanoplates act as anti‐nucleating agents to hinder nucleation. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
Detailed characterization of the crystallization behavior is important for obtaining better structure property correlations of the isotactic polypropylene (iPP), however, attributed to the complexity in ZN‐iPP polymerization, the relationship between crystallization behavior and the stereo‐defect distribution of iPP is still under debate. In this study, the crystallization kinetics of the primary nucleation, crystal growth and overall crystallization of two iPP samples (PP‐A and PP‐B) with nearly same average isotacticity but different stereo‐defect distribution (the stereo‐defect distribution of PP‐B is more uniform than PP‐A) were investigated. The results of isothermal crystallization kinetics showed that the overall crystallization rate of PP‐A was much higher than that of PP‐B; but the analysis of self‐nucleation isothermal crystallization kinetics and the polarized optical microscopy (POM) observation indicated that the high overall crystallization rate of PP‐A was attributed to the high primary nucleation rate of the resin. The stereo‐defect distribution plays an important role in determining both the nucleation kinetics and crystal grow kinetics, and thus influence the overall crystallization kinetics. A more uniform distribution of stereo‐defects restrains the crystallization rate of iPP, moreover, it has more influence on nucleation kinetics, comparing with the crystal growth. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
The structure development and crystallization behavior of poly(propylene) (PP) filled with wollastonite mineral was studied with respect to different particle sizes of the filler. The decrease in particle size led to increase in crystallization rates and decrease of crystallization half time, indicating greater nucleation efficiency for smaller sizes of the wollastonite particles. This was also reflected in the higher crystallinity values obtained for small filler particles. The WAXD analysis of PP/wollastonite revealed significant changes in the relative intensity of certain peaks (110 reflection) at small particle size, indicating preferential growth of PP on wollastonite. The exact co‐relationship of nucleation rate/crystallization rate and the additive particle size (d) was determined which showed that for any given concentration of the additive, it was proportional to (1/d)3.  相似文献   

8.
It is well known that the addition of a small amount of high‐pressure low‐density polyethylene (HP‐LDPE) to linear low‐density polyethylene (LLDPE) can improve the optical properties of LLDPE, and LLDPE/HP‐LDPE blend is widely applied to various uses in the field of film. The optical haziness of polyethylene blown films, as a result of surface irregularities, is thought to be as a consequence of the different crystallization mechanisms. However, not much effort has been directed toward understanding the effect of HP‐LDPE blending on the overall crystallization kinetics (k) of LLDPE including nucleation rate (n) and crystal lateral growth rate (v). In this study, we investigated the effect of blending 20% HP‐LDPE on the crystallization kinetics of LLDPE polymerized by Ziegler‐Natta catalyst with comonomer of 1‐butene. Furthermore, by combining depolarized light intensity measurement (DLIM) and small‐angle laser light scattering (SALLS), we have established a methodology to estimate the lateral growth rate at lower crystallization temperatures, in which direct measurement of lateral growth by polarized optical microscopy (POM) is impossible due to the formation of extremely small spherulites. This investigation revealed that HP‐LDPE blending leads to enhanced nucleation rate, reduced crystal lateral growth rate, and a slight increase in the overall crystallization kinetics of pure LLDPE. From the estimated crystal lateral growth rate, it was found that the suppression in v from HP‐LDPE blending is larger at lower temperatures than at higher temperatures. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
The Manganese thioglycolate (Mn‐TG) end capped poly(ε‐caprolactone) (PCL) was prepared by ring opening polymerization at 160°C under inert atmosphere in the presence of Mn‐TG as an initiator and stannous octoate as a catalyst by bulk polymerization technique. The prepared PCL was investigated using various analytical tools to assess its physico‐chemical properties. The chemical structure of PCL was confirmed by Fourier transform infrared and nuclear magnetic resonance spectroscopic techniques. The particle size and morphology of the sample was examined by atomic force microscopy and TEM. The melting and crystallization behavior of PCL was analyzed using differential scanning calorimetry. The thermal property of PCL was assessed with the help of thermogravimetric analysis (TGA). The non‐isothermal crystallization kinetics was carried out to understand the nucleation type and crystal growth for the prepared PCL. The energy of activation (Ea) for crystallization process of PCL was determined. The thermal degradation of PCL and its Ea was determined under non‐isothermal condition using important kinetic models. POLYM. ENG. SCI., 59:633–642, 2019. © 2018 Society of Plastics Engineers  相似文献   

10.
This work proposed a synthesis route of ZSM‐5 via the hydrothermal method with premixing in a stirred tank reactor (STR). Effects of various operating conditions, including pre‐mixing time, molar ratio of SiO2/Al2O3, TPAOH (organic template agents) concentration, NaCl (alkali metal cations) concentration, crystallization temperature, and crystallization reaction time, on the average particle size (PS) and particle size distribution (PSD) were investigated. It was found that the pre‐mixing time in the STR significantly affect the formation of proto‐nuclei in premixing process and crystal growth in hydrothermal reaction process, and consequently influence the PS and PSD of the prepared ZSM‐5. ZSM‐5 with good thermal stability, a PS of 380 nm, PSD of 0.17–0.9 µm, pore diameter of 2.31 nm, pore volume of 0.19 cm3 · g?1 and specific surface area of 337.25 m2 · g?1 were obtained under the optimal conditions of a crystallization reaction time of 24 h, a crystallization temperature of 130 °C, a molar ratio of SiO2/Al2O3 of 200, a TPAOH concentration of 3.5 mol · L?1, NaCl concentration of 0.3 mol · L?1, and a pre‐mixing time of 5 h. This work indicated that the operating conditions including premixing time have a significant effect on its PS and PSD.  相似文献   

11.
The experimental data concerning kinetics of a continuous mass crystallization in L-sorbose - water system are presented and discussed. Influences of L-sorbose concentration in a feeding solution and mean residence time of suspension in a working volume of laboratory DT MSMPR crystallizer on the resulting crystal size distributions, thus on the nucleation and growth kinetics, were determined. The kinetic parameter values were evaluated on the basis of size-independent growth (SIG) kinetic model (McCabe’s ΔL law). It was observed that within the investigated range of crystallizer productivity (220–2,200 kg of L-sorbose crystals m−3 h−1), a crystal product of mean size Lm from 0.22 to 0.28 mm and CV from 68.8 to 44.0% was withdrawn. The values of linear growth rate show increasing trend (from 6.6·10−8 to 7.6·10−8 m s−1) with the productivity enlargement (assuming constant residence time τ=900 s). Occurrence of secondary nucleation phenomena within the circulated suspension, resulting from the crystals attrition and breakage was observed. The parameter values in a design equation, matching linear growth rate and suspension density with nucleation rate were determined.  相似文献   

12.
Nonisothermal crystallization of poly(N‐methyldodecano‐12‐lactam) (MPA) was investigated using DSC method at cooling rates of 2–40 K/min. With increasing cooling rate, crystallization exotherms decreased in magnitude and shifted toward lower temperatures. Subsequent heating runs (10 K/min) showed an exotherm just above Tg, which increased in magnitude with the rate of preceding cooling run, corresponding to the continuation of primary crystallization interrupted as the system crossed Tg on cooling. Kinetic evaluation by the Avrami method gave values of exponent n close to 2.0, suggesting two‐dimensional crystal growth combined with heterogeneous nucleation. The Tobin method, covering the intermediate range of relative crystallinities, provided n ? 2.20, suggesting possible partial involvement of homogeneous nucleation at later stages of nonisothermal crystallization. The crystallization rate parameter k1/n showed a linear dependency on cooling rate for both methods, the Tobin values being slightly higher. The Ozawa approach failed to provide reasonable values of the kinetic exponent m of MPA. The Augis–Bennet method was used to determine the effective activation energy of the entire nonisothermal crystallization process of MPA. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 564–572, 2005  相似文献   

13.
A mathematical model for semibatch pH‐shift reactive crystallization of l ‐glutamic acid is developed that takes into account the effects of protonation and deprotonation in the species balance of glutamic acid, crystal size distribution, polymorphic crystallization, and nonideal solution properties. The crystallization mechanisms of  α‐ and β‐forms of glutamic acid are addressed by considering primary and secondary nucleation, size‐dependent growth rate, and mixing effects on nucleation. The kinetic parameters are estimated by Bayesian inference from batch experimental data collected from literature. Probability distributions of the estimated parameters in addition to their point estimates are obtained by Markov Chain Monte Carlo simulation. The first‐principles model is observed in good agreement with the experimental data and can be further used for model predictions in robust control strategies. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2828–2838, 2014  相似文献   

14.
头孢氨苄的传统生产方法多为间歇结晶,存在效率低、能耗高等弊端。为节约能耗、提高生产效率、缩短工时、降低成本,针对头孢氨苄等电点结晶的特点,本文设计了两级连续结晶工艺。采用单因素法系统研究了头孢氨苄水溶液初始浓度、停留时间、搅拌速率、结晶终点pH、晶种策略等因素对头孢氨苄连续结晶过程产品的收率、晶习及粒度分布的影响。单因素实验结果显示头孢氨苄水溶液质量分数为14%、最佳停留时间为12min、结晶终点pH控制在4.8附近、晶种添加量为5%时其产品收率、粒度分布均达到了理想的效果。该工艺能将结晶过程的过饱和度有效地控制在介稳区内,避免了爆发成核。与间歇结晶相比,两级连续结晶工艺的工时缩短30%。产品晶习完整,粒度分布均匀,收率可以达到96%。目前该工艺已成功实现单条生产线规模为500t/a的产业化应用。  相似文献   

15.
果糖结晶过程优化   总被引:2,自引:2,他引:2       下载免费PDF全文
通过实验筛选得到适合果糖结晶的混合溶剂,利用中通量结晶仪器Crystalline测定了果糖在水-乙醇(水的摩尔分数为0.39)混合溶剂中的溶解度和介稳区,采用Apelblat方程拟合了溶解度数据。基于热力学数据设计了晶种引晶的果糖冷却结晶工艺,过程优化得到的产品收率可达78.2%以上,纯度可达99%以上,晶体形貌规则,表面光滑,粒度分布窄。当晶体粒径大于100 μm时,利用粒度无关生长的粒数衡算方程建立了果糖连续结晶过程的动力学模型,模型表明晶体生长级数大于成核级数。  相似文献   

16.
Polypropylene (PP)/tetrapod‐shaped zinc oxide whisker (T‐ZnOw) composites are prepared via a melt‐mixing method in combination with a Haake rheometer. Differential scanning calorimetery (DSC) is used to investigate the nonisothermal and isothermal crystallization behaviors of the composites. Crystalline morphology is observed using hot‐stage optical microscopy, and the mechanical performance of the composites is investigated. Results indicate that T‐ZnOw has no heterogeneous nucleation effect on PP; in fact, it retards the growth of the crystal. Filled T‐ZnOw in PP matrix decreases the peak crystallization and melting temperatures of PP. T‐ZnOw shows either a reinforcing or toughening effect on the PP matrix at very lower weight ratios. These effects, however, decline with increasing T‐ZnOw contents because the size of the spherulitic crystals becomes bigger. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
通过惰性粒子对氯化钾流化结晶过程成核速率、晶体生长速率及晶型影响的实验研究,揭示了外加惰性粒子对流化床结晶动力学特性的影响机理和规律,并回归建立了相关数学模型。实验结果表明,惰性粒子主要通过与晶体的碰撞产生大量二次晶核,进而对晶体生长速率产生负面影响,并改变了晶型。其主要影响因素为惰性粒子的密度和尺寸。  相似文献   

18.
19.
The effect of parameters of the CL‐20 crystallization process carried out by solvent removal by evaporation in vacuo on shape, polymorph type, crystal size, and on their shock sensitivity was studied. The CL‐20 crystallization process by this technique was shown to allow a precise control of the crystallization process parameters and of the process run. The o‐xylene/ ethyl acetate system proved to be highly effective. Selecting suitable values of the parameters such as: pressure, process time, temperature, stirring rate, CL‐20 crystals were obtained in the ε form (even with no need for inoculation of the crystallization system with polymorph ε seeds) and of the shape close to a spherical one. The crystal growth modifiers added allowed to additionally control the shape and size of the CL‐20 crystals formed and to produce crystals of reduced impact and friction sensitivity.  相似文献   

20.
Drop‐based crystallization techniques are used to achieve a high degree of control over crystallization conditions in order to grow high‐quality protein crystals for X‐ray diffraction or to produce organic crystals with well‐controlled size distributions. Simultaneous crystal growth and stochastic nucleation makes it difficult to predict the number and size of crystals that will be produced in a drop‐based crystallization process. A mathematical model of crystallization in drops is developed using a Monte Carlo method. The model incorporates key phenomena in drop‐based crystallization, including stochastic primary nucleation and growth rate dispersion (GRD) and can predict distributions of the number of crystals per drop and full crystal size distributions (CSD). Key dimensionless parameters are identified to quickly screen for crystallization conditions that are expected to yield a high fraction of drops containing one crystal and a narrow CSD. Using literature correlations for the solubilities, growth, and nucleation rates of lactose and lysozyme, the model is able to predict the experimentally observed crystallization behavior over a wide range of conditions. Model‐based strategies for use in the design and optimization of a drop‐based crystallization process for producing crystals of well‐controlled CSD are identified. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号