首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new membrane material having two kinds of CO2 carriers was obtained. Composite membranes were prepared with the material and support membranes. The facilitated transport of CO2 through these membranes was performed with pure CH4 and CO2 as well as CH4/CO2 mixtures containing 50 vol % CO2. The results show that the membranes possess better CO2 permeance than that of other fixed carrier membranes reported in the literature. In the measurements with pure gases, at 26°C, 0.013 atm of CO2 pressure, the membrane with polysulfone support displays a CO2 permeance of 7.93 × 10?4 cm3 /cm2 s cmHg and CO2/CH4 ideal selectivity of 212.1. In the measurements with mixed gases, at 26°C, 0.016 atm of CO2 partial pressure, the membrane displays a CO2 permeance of 1.69 × 10?4 cm3 /cm2 s cmHg and CO2/CH4 selectivity of 48.1. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2222–2226, 2002  相似文献   

2.
Fixed‐carrier composite hollow‐fiber membranes were prepared with polyvinylamine (PVAm) as the selective layer and a polysulfone ultrafiltration membrane as the substrate. The effects of the PVAm concentration in the coating solution, the number of coatings, and the crosslinking of glutaraldehyde and sulfuric acid on the CO2 permeation rate and CO2/CH4 selectivity of the composite membranes were investigated. As the PVAm concentration and the number of coatings increased, the CO2/CH4 selectivity increased, but the CO2 permeation rate decreased. The membranes crosslinked by glutaraldehyde or sulfuric acid possessed higher CO2/CH4 selectivities but lower CO2 permeation rates. For the pure feed gas, a composite hollow‐fiber membrane coated with a 2 wt % PVAm solution two times and then crosslinked with glutaraldehyde and an acid solution in sequence had a CO2 permeation rate of 3.99 × 10?6 cm3 cm?2 s?1 cmHg?1 and an ideal CO2/CH4 selectivity of 206 at a feed gas pressure of 96 cmHg and 298 K. The effect of time on the performance of the membranes was also investigated. The performance stability of the membranes was good during 6 days of testing. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1885–1891, 2006  相似文献   

3.
We have developed a new type of asymmetric membranes having a homogeneous hyperthin skin layer, which was used as a polyimide synthesized by 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 2,2-bis(4-amino phenyl) hexafluoro-propane (BAAF). The skin layer thicknesses of the 6FDA-BAAF polyimide asymmetric membranes were 40–60 nm, and the porosity was 10-6% when a defect size was assumed as 5 nm. The permselectivity of 6FDA-BAAF polyimide asymmetric membranes after silicone coating had α of 40 for CO2/CH4 and a flux of 1.0 [Nm3/m2-h-atm] (=3.7 × 10−4 [cm3(STP)/cm2 s cmHg]) for CO2, α of 4.3 for O2/N2 and a flux of 2.0 × 10−1 [Nm3/m2/h/atm] (=7.1 × 10−5 [cm3(STP)/cm2s cmHg]) for O2. These values were constant for large-scale manufacturing. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
Permeability and selectivity of CO2, O2, N2, and CH4 were determined for the asymmetric membrane of aromatic polyimide derived from 2,2′-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 3,3′-diaminodiphenylsulfone (m-DDS) at 35°C and at pressure up to 76 cmHg. The average apparent skin layer thickness of all asymmetric membranes measured was 2.6 μm. The selectivities for (O2/N2) and (CO2/CH4) in the membranes were 11.5 at O2 permeance of 3.2 × 10−7 and 153 at CO2 of 6.3×10−7 [cm3(STP)/cm2 s cmHg], respectively, without the necessity of an additional coating process. The average gas selectivities of the asymmetric memberanes were much larger than those determined for the dense membrances. The effect of the microstructure of polyimide on the gas selectivity is discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
In this study, the effects of 1-Ethyl-3-methylimidazolium tetrafluoroborate ionic liquid on CO2/CH4 separation performance of symmetric polysulfone membranes are investigated. Pure polysulfone membrane and ionic liquid-containing membranes are characterized. Field emission scanning electron microscopy (FE-SEM) is used to analyze surface morphology and thickness of the fabricated membranes. Energy dispersive spectroscopy (EDS) and elemental mapping, Fourier transform infrared (FTIR), thermal gravimetric (TGA), X-ray diffraction (XRD) and Tensile strength analyses are also conducted to characterize the prepared membranes. CO2/CH4 separation performance of the membranes are measured twice at 0.3 MPa and room temperature (25 °C). Permeability measurements confirm that increasing ionic liquid content in polymer-ionic liquid membranes leads to a growth in CO2 permeation and CO2/CH4 selectivity due to high affinity of the ionic liquid to carbon dioxide. CO2 permeation significantly increases from 4.3 Barrer (1 Barrer=10-10 cm3(STP)·cm·cm-2·s-1·cmHg-1, 1cmHg=1.333kPa) for the pure polymer membrane to 601.9 Barrer for the 30 wt% ionic liquid membrane. Also, selectivity of this membrane is improved from 8.2 to 25.8. mixed gas tests are implemented to investigate gases interaction. The results showed, the disruptive effect of CH4 molecules for CO2 permeation lead to selectivity decrement compare to pure gas test. The fabricated membranes with high ionic liquid content in this study are promising materials for industrial CO2/CH4 separation membranes.  相似文献   

6.
A vinyl amine–vinyl alcohol copolymer (VAm–VOH) was synthesized through free‐radical polymerization, basic hydrolysis in methanol, acidic hydrolysis in water, and an anion‐exchange process. In the copolymer, the primary amino groups on the VAm segment acted as the carrier for CO2‐facilitated transport, and the vinyl alcohol segment was used to reduce the crystallinity and increase the gas permeance. VAm–VOH/polysulfone (PS) composite membranes for CO2 separation were prepared with the VAm–VOH copolymer as a selective layer and PS ultrafiltration membrane as a support. The membrane gas permselectivity was investigated with CO2, N2, and CH4 pure gases and their binary mixtures. The results show that the CO2 transport obeyed the facilitated transport mechanism, whereas N2 and CH4 followed the solution–diffusion mechanism. The increase in the VAm fraction in the copolymer resulted in a carrier content increase, a crystallinity increase, and intermolecular hydrogen‐bond formation. Because of these factors, the CO2 permeance and CO2/N2 selectivity had maxima with the VAm fraction. At an optimum applied pressure of 0.14 MPa and at an optimum VAm fraction of 54.8%, the highest CO2 permeance of 189.4 GPU [1 GPU = 1 × 10?6 cm3(STP) cm?2 s?1 cmHg?1] and a CO2/N2 selectivity of 58.9 were obtained for the CO2/N2 mixture. The heat treatment was used to improve the CO2/N2 selectivity. At an applied pressure of 0.8–0.92 MPa, the membrane heat‐treated under 100°C possessed a CO2 permeance of 82 GPU and a CO2/N2 selectivity of 60.4, whereas the non‐heat‐treated membrane exhibited a CO2 permeance of 111 GPU and a CO2/N2 selectivity of 45. After heat treatment, the CO2/N2 selectivity increased obviously, whereas the CO2 permeance decreased. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40043.  相似文献   

7.
Mixed matrix membranes (MMMs) containing fluorinated‐sulfonated poly(ether ether ketone) (F‐SPEEK) and zeolite 4A filler, were prepared by solution casting. F‐SPEEK with a fixed degree of sulfonation (40%) was used for membrane synthesis. The SEM pictures showed good interfacial adhesion between filler particles and polymer, which was also confirmed by the increase in glass transition temperature of MMMs with increase in filler particles. Pure and mixed gas permeation experiments were carried out to investigate the potential of this membrane material. The results revealed that addition of zeolite 4A fillers enhanced both permeability and selectivity owing to the intrinsic nature of polymer and modified membrane morphology due to filler. The highest permeability obtained for CO2 at 30% filler loading was 49.2 Barrer, while highest selectivities obtained for CO2/CH4 and CO2/N2 were 55 and 58 compared to 47 and 51 for the unfilled polymer, respectively. Intrinsic CO2 solubility of F‐SPEEK was observed to be decreased from 10.7 to 1.9 (10?2) cm3 (STP)/cm3 cmHg with the addition of Zeolite 4A. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45952.  相似文献   

8.
Mixed matrix membranes (MMMs), which combine the characteristics of inorganic nanofillers and organic matrices, have received wide attention because of their good permeability and selective performance for separating CO2 from industrial waste gases. In this work, the amino-GO-loaded bentonite (amino GO-Bent) was prepared by loading  NH2 on the GO surface with a large number of functional sites. Firstly, by introducing  NH2 on the surface of GO and then interacting with bentonite (Bent) organically modified by silane coupling agents through amide bonding. Mixed matrix membranes (MMMs) with an area of 623.7 cm2 and homogeneous texture were prepared using amino-GO-Bent as inorganic filler to improve the membrane selectivity for CO2/N2 and CO2/CH4 separation. The results show that the introduction of amino GO-Bent in MMMs can greatly improve the CO2 permeability and obtain high CO2 permeation performance: 2.67945 × 10−7 cm3 (STP)·cm/s/cm2/cmHg, and the selectivity of CO2/N2 and CO2/CH4 can reach 307.28 and 325.97, respectively. The two selective values were 14 and 18 times higher than those of pure PVDF membranes, and the performance of MMMs far exceeded the Robeson upper limit in 2008, respectively.  相似文献   

9.
The U‐shaped alkaline‐earth metal‐free CO2‐stable oxide hollow‐fiber membranes based on (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ (PLNCG) are prepared by a phase‐inversion spinning process and applied successfully in the partial oxidation of methane (POM) to syngas. The effects of temperature, CH4 concentration and flow rate of the feed air on CH4 conversion, CO selectivity, H2/CO ratio, and oxygen permeation flux through the PLNCG hollow‐fiber membrane are investigated in detail. The oxygen permeation flux arrives at approximately 10.5 mL/min cm2 and the CO selectivity is higher than 99.5% with a CH4 conversion of 97.0% and a H2/CO ratio of 1.8 during 140 h steady operation. The spent hollow‐fiber membrane still maintains a dense microstructure and the Ruddlesden‐Popper K2NiF4‐type structure, which indicates that the U‐shaped alkaline‐earth metal‐free CO2‐tolerant PLNCG hollow‐fiber membrane reactor can be steadily operated for POM to syngas with good performance. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3587–3595, 2014  相似文献   

10.
Permeability and selectivity of pure gas H2, CO2, O2, N2 and CH4 as well as a mixture of CO2/N2 for sulfonated homopolyimides prepared from 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTDA) and 2,2-bis[4-(4-aminophenoxy)phenyl] hexafluoro propane disulfonic acid (BAPHFDS) were measured and compared to those of the non-sulfonated homopolyimide having the same polymer backbone. The polyimide in a proton form (NTDA-BAPHFDS(H)) displayed higher selectivity of H2 over CH4 without loss of H2 permeability. Strong intermolecular interaction induced by sulfonic acid groups decreased diffusivity of the larger molecules. The CO2/N2 (19/81) mixed gas permeation was investigated as a function of humidity. With increasing relative humidity from 0% RH to 90% RH, the CO2 permeability for NTDA-BAPHFDS(H) polyimide increased by more than one order of magnitude, and the selectivity of CO2/N2 also increased twice or more. On the other hand, the gas permeability for the non-sulfonated polyimide slightly decreased with increasing humidity. NTDA-BAPHFDS(H) polyimide displayed a CO2 permeability of 290×10−10 cm3 (STP) cm/(cm2 s cmHg) and a separation factor of CO2/N2 of 51 at 96% RH, 50 °C and total pressure of 1 atm.  相似文献   

11.
High‐temperature CO2 selective membranes offer potential for use to separate flue gas and produce a warm, pure CO2 stream as a chemical feedstock. The coupling of separation of CO2 by a ceramic–carbonate dual‐phase membrane with dry reforming of CH4 to produce syngas is reported. CO2 permeation and the dry reforming reaction performance of the membrane reactor were experimentally studied with a CO2–N2 mixture as the feed and CH4 as the sweep gas passing through either an empty permeation chamber or one that was packed with a solid catalyst. CO2 permeation flux through the membrane matches the rate of dry reforming of methane using a 10% Ni/γ‐alumina catalyst at temperatures above 750°C. At 850°C under the reaction conditions, the membrane reactor gives a CO2 permeation flux of 0.17 mL min?1 cm?2, hydrogen production rate of 0.3 mL min?1 cm?2 with a H2 to CO formation ratio of about 1, and conversion of CO2 and CH4, respectively, of 88.5 and 8.1%. © 2013 American Institute of Chemical Engineers AIChE J, 59: 2207–2218, 2013  相似文献   

12.
We have developed defect‐free asymmetric hexafluoro propane diandydride (6FDA) durene polyimide (6FDA‐durene) hollow fibers with a selectivity of 4.2 for O2/N2 and a permeance of 33.1 ×10?6 cm3 (STP)/cm2‐s‐cmHg for O2. These fibers were spun from a high viscosity in situ imidization dope consisting of 14.7% 6FDA‐durene in a NMP solvent and the inherent viscosities (IV) of this 6FDA‐durene polymer was 0.84 dL/g. Low IV dopes cannot produce defect‐free hollow fibers, indicating a 6FDA‐durene spinning dope with a viscosity in the region of chain entanglement seems to be essential to yield hollow fibers with minimum defects. The effects of spinning parameters such as shear rates within a spinneret and bore fluids as well as air gap on gas separation performance were investigated. Experimental data demonstrate that hollow fibers spun with NMP/H2O as the bore liquid have higher permeances and selectivities than those spun with glycerol as the bore liquid because the former has a relatively looser inner skin structure than the latter. In addition, the selectivity of hollow fibers spun with NMP/H2O as the bore liquid changes moderately with shear rate, while the selectivity of hollow fibers spun with glycerol are less sensitive to the change of shear rate. These distinct behaviors are mainly attributed to the different morphologies generated by different bore fluids. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2166–2173, 2001  相似文献   

13.
Microporous polyethylene (PE) hollow fiber membrane with a porosity of 43% and N2 permeation of 4.96 cm3 (STP)/cm2 s cmHg was prepared by melt‐spinning and cold‐stretching method. It was found that PE with a density higher than 0.96 g/cm3 should be used for the preparation of microporous PE hollow fiber membranes. By increasing the spin–draw ratio, both the porosity and the N2 permeation of the hollow fiber membranes increased. Annealing the nascent hollow fiber at 115°C for 2 h was suitable for attaining membranes with good performance. By straining the hollow fiber to higher extensions, the amount and size of the micropores in the hollow fiber wall increased, and the N2 permeation of the membranes increased accordingly. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 203–210, 2002; DOI 10.1002/app.10305  相似文献   

14.
The novel fixed‐site‐carrier (FSC) membranes were prepared by coating carbon nanotubes reinforced polyvinylamine/polyvinyl alcohol selective layer on top of ultrafiltration polysulfone support. Small pilot‐scale modules with membrane area of 110–330 cm2 were tested with high pressure permeation rig. The prepared hybrid FSC membranes show high CO2 permeance of 0.084–0.218 m3 (STP)/(m2 h bar) with CO2/CH4 selectivity of 17.9–34.7 at different feed pressures up to 40 bar for a 10% CO2 feed gas. Operating parameters of feed pressure, flow rate, and CO2 concentration were found to significantly influence membrane performance. HYSYS simulation integrated with ChemBrane and cost estimation was conducted to evaluate techno‐economic feasibility of a membrane process for natural gas (NG) sweetening. Simulation results indicated that the developed FSC membranes could be a promising candidate for CO2 removal from low CO2 concentration (10%) NGs with a low NG sweetening cost of 5.73E?3 $/Nm3 sweet NG produced. © 2014 American Institute of Chemical Engineers AIChE J 60: 4174–4184, 2014  相似文献   

15.
In this article, three novel polymers based on poly(2,5‐benzimidazole) (ABPBI) were synthesized by introducing propyl, isobutyl or n‐butyl groups to its side chain through an alkyl substitution reaction. FTIR and 13C NMR were applied to confirm the formation of corresponding chemical groups. Their physical properties including crystallinity, thermal stability, mechanical strength, and micro‐morphology were also characterized. Their solubility in common solvents were also tested to see if the modification will bring any improvement. Gas permeation properties of three derivative membranes prepared by a casting and solvent‐evaporation method were tested with pure gases including H2, N2, O2, CH4, and CO2. It has been revealed that gas with a smaller molecular size owned a larger permeability. This means gas permeation in all prepared membranes should be diffusivity selective. Among all three modified ABPBI membranes, isobutyl substitution modified ABPBI (IBABPBI) showed the best selectivity of H2 over other gases such as N2 (~185) and CO2 (~6.3) with a comparable permeability (~9.33 barrer) when tested at 35°C and 3.0 atm. Testing temperature increase facilitated gas permeation for all three membranes obviously; while in term of gas selectivity temperature increase showed diverse alteration because it brought variable impact on gas solubility of different gases. Even so, IBABPBI membrane still owned acceptable selectivity of H2 over N2 (~118) and CO2 (~6.3) with an almost doubled permeability (~17.5 barrer) when tested at 75°C and 3.0 atm. Additional tests showed that running at high pressure did not bring any obvious deterioration to gas separation performance of IBABPBI membrane. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40440.  相似文献   

16.
Polymer electrolyte blend membranes composed of sulfonated block‐graft polyimide (S‐bg‐PI) and sulfonated polybenzimidazole (sPBI) were prepared and characterized. The proton conductivity and oxygen permeability coefficient of the novel blend membrane S‐bg‐PI/sPBI (7 wt%) were 0.38 S cm?1 at 90 °C and 98% relative humidity and 7.2 × 10?13 cm3(STP) cm (cm2 s cmHg)?1 at 35 °C and 76 cmHg, respectively, while those of Nafion® were 0.15 S cm?1 and 1.1 × 10?10 cm3(STP) cm (cm2 s cmHg)?1 under the same conditions. The apparent (proton/oxygen transport) selectivity calculated from the proton conductivity and the oxygen permeability coefficient in the S‐bg‐PI/sPBI (7 wt%) membrane was 300 times larger than that determined in the Nafion membrane. Besides, the excellent gas barrier properties based on an acid ? base interaction in the blend membranes are expected to suppress the generation of hydrogen peroxide and reactive oxygen species, which will degrade fuel cells during operation. The excellent proton conductivity and gas barrier properties of the novel membranes promise their application for future fuel cell membranes. © 2015 Society of Chemical Industry  相似文献   

17.
Copolymers based on glassy and rubbery units have been developed to take advantage of both domains to enhance solubility and diffusivity. In this study, a series of gas separation membranes from polysulfone (PSF) containing ethylene glycol were synthesized via nucleophilic substitution polycondensation. The structures of copolymers were characterized by nuclear magnetic resonance spectra, Fourier transform infrared spectra, and thermal gravity analysis. The permeability and selectivity of the membranes were studied at different temperatures of 25–55 °C and pressures of 0.5–1.5 atm using single gases CO2 and CH4. Gas permeation measurements showed that copolymers with different contents of poly(ethylene glycol) exhibited different separation performances. For example, the membrane from PSF-PEG2000-20 containing 20 wt% poly(ethylene glycol) showed better performance in terms of ideal selectivity over the other seven copolymer membranes. The highest ideal CO2/CH4 selectivity was 43.0 with CO2 permeability of 6.4 Barrer at 1.5 atm and 25 °C.  相似文献   

18.
PVAm/PAN复合膜的制备及其对CO2/CH4的分离性能   总被引:1,自引:0,他引:1  
王志  董传明  吕强  王世昌 《化工学报》2003,54(8):1188-1191
New polymeric membrane materials——polyvinyl amine (PVAm) with different primary amine contents were synthesized.By covering polyacrylonitrile(PAN) ultrafiltration membranes with PVAm, the PVAm/PAN composite membranes for CO2/CH4 separation were prepared. The composite membranes containing more primary amino groups have higher selectivity for CO2/CH4.The cross-linking of acid or glutaradehyde could improve the gas permselectivity of the composite membranes. With decreasing CO2 content in the feed gas, the CO2/CH4 separation factor increased.When the feed gas was 25%(vol) CO2 and 75%(vol) CH4, the CO2 permeation rate was 4.1×10-9cm3(STP) •cm-2•Pa-1•s-1, and the CO2/CH4 separation factor was 180.  相似文献   

19.
Integrally skinned asymmetric flat sheet membranes were prepared from poly(2,6‐dimethyl 1,4‐phenylene oxide)(PPO) for CO2–CH4 separation. Various experiments were carried out to identify PPO membranes, which have good mechanical strength and gas separation abilities. Membrane strength and selectivity depend on the interplay of the rate of precipitation and the rate of crystallization of the PPO. The effects of major variables involved in the membrane formation and performance, including the concentration of the polymer, solvent, and additive, the casting thickness, the evaporation time before gelation, and the temperature of the polymer solution, were investigated. Factorial design experiments were carried out to identify the factor effects. The membrane performance was modelled and optimized to approach preset values for high CO2 permeance and a high CO2 : CH4 permeance ratio. Membranes were prepared based on the optimum conditions identified by the model. Essentially, defect‐free membranes were prepared at these conditions, which resulted in a pure gas permeance of 9.2 × 10−9 mol/m2 s Pa for CO2 and a permeance ratio of 19.2 for CO2 : CH4. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1601–1610, 1999  相似文献   

20.
A porous‐dense dual‐layer composite membrane reactor was proposed. The dual‐layer composite membrane composed of dense 0.5 wt % Nb2O5‐doped SrCo0.8Fe0.2O3‐δ (SCFNb) layer and porous Ba0.3Sr0.7Fe0.9Mo0.1O3‐δ (BSFM) layer was prepared. The stability of SCFNb membrane reactor was improved significantly by the porous‐dense dual‐layer design philosophy. The porous BSFM surface‐coating layer can effectively reduce the corrosion of the reducing atmosphere to the membrane, whereas the dense SCFNb layer permeated oxygen effectively. Compared with single‐layer dense SCFNb membrane reactor, no degradation of performance was observed in the dual‐layer membrane reactor under partial oxidation of methane during continuously operating for 1500 h at 850°C. At 900°C, oxygen flux of 18.6 mL (STP: Standard Temperature and Pressure) cm?2 min?1, hydrogen production of 53.67 mL (STP) cm?2 min?1, CH4 conversion of 99.34% and CO selectivity of about 94% were achieved. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4355–4363, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号