首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of an organically modified montmorillonite (OMMT) on the curing kinetics of a thermoset system based on a bisphenol A epoxy resin and a poly(oxypropylene)diamine curing agent were studied by means of differential scanning calorimetry (DSC) in isothermal and dynamic (constant heating rate) conditions. Montmorillonite and prepared composites were characterized by X‐ray diffraction analysis (XRD) and simultaneous differential scanning calorimetry–thermogravimetric analysis (DSC–TGA). Analysis of DSC data indicated that the presence of the filler has a very small effect on the kinetics of cure. A kinetic model, arising from an autocatalyzed reaction mechanism, was applied to the DSC data. Fairly good agreement between experimental and modeling data was obtained. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 550–557, 2006  相似文献   

2.
The curing behavior of an epoxy/clay nanocomposite system composed of a bifunctional epoxy resin with an aromatic amine curing agent and an organically modified clay was investigated. Differential scanning calorimetry (DSC) was used to investigate the curing behavior of the epoxy/clay nanocomposite system. The curing rate of the nanocomposite system increased with increasing clay content. A kinetic equation, considering an autocatalytic reaction mechanism, could describe fairly well the curing behavior of the epoxy/clay nanocomposite system. The reaction kinetic parameters of the kinetic equation were determined by fitting DSC conversion data to the kinetic equation, using a nonlinear numerical method. Dynamic mechanical analysis was used to investigate the thermomechanical properties of the epoxy/clay nanocomposite system. The glass transition temperature of the epoxy/clay nanocomposite system increased slightly with increasing clay content. The structure of the nanocomposite system was characterized by X‐ray diffraction analysis and transmission electron microscope imaging. The formation of intercalated structures was observed dominantly in the epoxy/clay nanocomposites, together with some exfoliated structures. POLYM. ENG. SCI., 46:1318–1325, 2006. © 2006 Society of Plastics Engineers  相似文献   

3.
The curing behavior of epoxy resin prepared by reacting epichlorohydrin with amine functional aniline acetaldehyde condensate (AFAAC) was investigated using AFAAC as a curing agent. The epoxy resin, {2,6‐bis‐[2‐(bis‐oxiranylmethyl‐amino)‐methylbenzyl]‐phenyl}‐bis‐oxiranylmethylamine (BPBOMA), was characterized by FTIR and 1H‐NMR spectroscopy, viscosity measurement, and determination of epoxy content. Analysis of the curing reaction was followed by differential scanning calorimetry (DSC) analysis. To investigate the curing kinetic with AFAAC, dynamic DSC scans were made at heating rates of 5, 10, 15, and 20°C/min. The activation energy and frequency factor of the AFAAC formulation were evaluated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3168–3174, 2006  相似文献   

4.
The thermal properties of carbon nanofibers (CNF)/epoxy composites, composed of tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM) resin and 4,4′‐diaminodiphenylsulfone (DDS) as a curing agent, were investigated with differential scanning calorimetry (DSC), thermogravimetric analysis, and dynamic mechanical thermal analysis. DSC results showed that the presence of CNF had no pronounced influence on the heat of the cure reaction. However, the incorporation of CNF slightly improved the thermal stability of the epoxy. Furthermore, the storage modulus of the TGDDM/DDS epoxy was significantly enhanced, whereas the glass‐transition temperature was not significantly affected, upon the incorporation of CNFs. The storage modulus of 5 wt % CNF/epoxy composites at 25°C was increased by 35% in comparison with that of the pure epoxy. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 295–298, 2006  相似文献   

5.
An investigation was carried out into the cure kinetics of carbon nanofibers (CNF)/epoxy composites, composed of tetraglycidyl‐4,4′‐diaminodiphenylmethane (TGDDM) resin and 4,4′‐diaminodiphenylsulfone (DDS) as a curing agent. The experimental data for both neat system and CNF/epoxy composites revealed an autocatalytic behavior. Analysis of DSC data indicated that the presence of carbon nanofibers had only a negligible effect on the cure kinetics of the epoxy. Kinetic analysis was performed using the phenomenological model of Kamal and two diffusion factors were introduced to describe the cure reaction in the latter stage. Activation energies and kinetic parameters were determined by fitting experimental data. Comparison between the two diffusion factors was performed, showing that the modified factor was successfully applied to the experimental data over the whole curing temperature range. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 329–335, 2005  相似文献   

6.
The curing reaction kinetics of an epoxy based on the diglycidyl ether of bisphenol A (DGEBA) with an inorganic complex based on nickel(II) chelate with ethylenediamine (en) as a ligand were studied using DSC in dynamic mode. The complex curing agent was synthesized and characterized by the elemental analysis, FT‐IR, and ICP‐Plasma techniques. Thermal dissociation behavior of curing agent was also studied using thermogravimetric (TG) analysis in isolated form. Three kinetic models, Kissinger, Ozawa‐Flynn‐Wall, and Expanded Freeman‐Carrole, were used to determine the kinetic parameters. The effect of hardener concentration on the kinetic parameters and the shape of DSC thermograms of the DGEBA/Ni(en)3Br2 system were investigated. Finally, the previous proposed mechanism by another researcher was used to explain the DSC data in detail. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 265–271, 2005  相似文献   

7.
The curing kinetics and mechanisms of diglycidyl ether of bisphenol A (DGEBA) using imidazole (H‐NI) and 1‐methyl imidazole (1‐MI) as curing agents are studied with differential scanning calorimetry (DSC) under isothermal (90–120°C) and dynamic conditions (50–250°C). The isothermal DSC thermograms of curing DGEBA with H‐NI and 1‐MI curing agents show two exothermic peaks. These peaks are assigned to the processes of adduct formation and etherification. These results indicate that there is no difference in the initiation mechanism of 1‐unsubstituted (H‐NI) and 1‐substituted (1‐MI) imidazoles in the curing reaction with epoxy resin. A kinetic analysis is performed using different kinetic models. The activation energies obtained from DSC scanning runs using the Ozawa and Kissinger methods are similar and in the range of 75–79 and 76–82 kJ/mol for DGEBA/H‐NI and DGEBA/1‐MI systems, respectively. These values compare well with the activation energies obtained from isothermal DSC experiments using the autocatalytic method (74–77 kJ/mol). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2634–2641, 2006  相似文献   

8.
The kinetics of the cure reaction for a system of o‐cresol‐formaldehyde epoxy resin (o‐CFER), 3‐methyl‐tetrahydrophthalic anhydride (MeTHPA), N,N‐dimethyl‐benzylamine, and organic montmorillonite(O‐MMT) were investigated by means of X‐ray diffraction (XRD) and differential scanning calorimetry (DSC). The XRD result indicates that an exfoliated nanocomposite was obtained. The analysis of DSC data indicated the behavior was shown in the first stages of the cure for the system, which could be well described by the model proposed by Kamal. In the later stages, the reaction is mainly controlled by diffusion, and diffusion factor, f(α), was introduced into Kamal's equation. In this way, the curing kinetics was predicted well over the entire range of conversion. Molecular mechanism for curing reaction was discussed. The thermal degradation kinetics of the system were investigated by thermogravimetric analysis (TGA), which revealed that with the increase of O‐MMT content, TG curves shift to higher temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3023–3032, 2006  相似文献   

9.
Bisphenol A dicyanate (BADCy) was modified by diglycidyl ether of bisphenol A epoxy resins with different molecular weights [E20 (weight‐average molecular weight = 1000) and E51 (weight‐average molecular weight = 400)] to investigate the effects of the epoxy molecular weight on the properties of the modified systems. The reactions were monitored with differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy, and the results showed that more pentacyclic oxazolidinone rings were formed in BADCy/E51 than in BADCy/E20 with the same epoxy resin weight content. DSC showed that BADCy/E20 had a lower curing temperature than BADCy/E51 because of the higher concentration of hydroxyl groups (? OH) in E20. Thermal, moisture absorption, and mechanical testing showed that E51‐modified BADCy performed better because of its lower molecular weight. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1744–1750, 2006  相似文献   

10.
We developed a conductive epoxy/amine system containing polyaniline doped with dodecylbenzenesulfonic acid (PAni.DBSA). The curing behaviors of diglycidyl ether of bisphenol A with triethylenetetramine (TETA), PAni.DBSA, and both amine compounds at different concentrations were investigated by differential scanning calorimetry (DSC). Epoxy/TETA systems containing PAni.DBSA presented two distinct exothermic peaks at 90°C due to the cure by TETA as a hardener and at 236°C related to PAni.DBSA as the curing agent. The presence of PAni.DBSA in the systems constituted by epoxy/hardener in stoichiometric proportions resulted in a decrease in the glass‐transition temperature of the epoxy matrix, as indicated by DSC and dielectric analyses. Electrical conductivity was determined in the epoxy/amine networks, with the TETA concentration kept constant and also in stoichiometric proportions of mixed hardener (TETA + PAni.DBSA) to epoxy resin. The last condition resulted in a higher electrical conductivity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:4059–4065, 2006  相似文献   

11.
The morphology and mechanical and viscoelastic properties of rubbery epoxy/organoclay montmorillonite (MMT) nanocomposites were investigated with wide‐angle X‐ray scattering (WAXS), transmission electron microscopy (TEM), tensile testing, and dynamic mechanical thermal analysis. An ultrasonicator was used to apply external shearing forces to disperse the silicate clay layers in the epoxy matrix. The first step of the nanocomposite preparation consisted of swelling MMT in a curing agent, that is, an aliphatic diamine based on a polyoxypropylene backbone with a low viscosity for better diffusion into the intragalleries. Then, the epoxy prepolymer was added to the mixture. Better dispersion and intercalation of the nanoclay in the matrix were expected. The organic modification of MMT with octadecylammonium ions led to an increase in the initial d‐spacing (the [d001] peak) from 14.4 to 28.5 Å, as determined by WAXS; this indicated the occurrence of an intercalation. The addition of 5 phr MMTC18 (MMT after the modification) to the epoxy matrix resulted in a finer dispersion, as evidenced by the disappearance of the diffraction peak in the WAXS pattern and TEM images. The mechanical and viscoelastic properties were improved for both MMT and MMTC18 nanocomposites, but they were more pronounced for the modified ones. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 103: 3547–3552, 2007  相似文献   

12.
Blocked polyurethane (PU)/epoxy full‐interpenetrating polymer network (full‐IPN) were synthesized from blocked NCO‐terminated PU prepolymer, with 4,4‐methylene diamine as a chain extender and epoxy prepolymer, with 4,4‐methylene diamine as a curing agent, using simultaneous polymerization (SIN) method. From FTIR spectra analysis it was found that the major reactions in the blocked PU/epoxy IPN system are the self‐polymerization of block PU/chain extender and the self‐polymerization of epoxy/curing agent. Meanwhile, from reaction mechanisms the copolymerization of IPN may have occurred at the same time. The weight loss by thermogravimetric analysis decreased with increasing epoxy and filler content. It was confirmed from scanning electron micrography (SEM) that when the blocked PU content increased, the microstructure of IPN became rougher. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 323–328, 2006  相似文献   

13.
An amino‐capped aniline trimer (ACAT) in emeraldine base form was reacted with an epoxy resin to produce intercrosslinked networks. The quinoid structure of the ACAT was able to crosslink on curing and, thus, led to a very high glass‐transition temperature of the cured resin. The epoxy resin cured with the ACAT showed superior thermal properties over the resins cured with p‐phenylenediamine and 4,4′‐diamino diphenylamine. These findings were based on differential scanning calorimetry, IR, dynamic mechanical analysis, and thermogravimetric analysis data. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 222–226, 2006  相似文献   

14.
The mechanism and kinetics of curing of epoxy resin with poly(m‐phenylene methylphosphonate) (PMP) was studied by extraction and swelling experiments, DSC, 31P NMR, and FTIR. It was shown that at linear heating of 20°C/min PMP cures bisphenol A type epoxy resin at 230–300°C, whereas in the presence of catalytic amount of 2‐methyl imidazole the curing occurs at 200–230°C. Under isothermal conditions, epoxy resin was cured with PMP after 40–70 min at 150°C. An unusual mechanism of curing due to opening and insertion of epoxy into the phosphonate bond was suggested. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4011–4022, 2006  相似文献   

15.
This article is focused on the following of the cure of an epoxy resin by high‐performance liquid chromatography (HPLC) and the comparison of the data obtained with those obtained by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) techniques usually employed for characterize curing processes. A reversed‐phase HPLC method with UV detection is developed to study the kinetic of the curing reaction of diglycidyl ether of bisphenol A (DGEBA) with 1,3‐cyclohexanebismethylamine (1,3‐BAC) at 60, 70, and 80°C, before and after gelation. The limits of quantification obtained permit the application of the proposed method until the last steps of the formation kinetic. HPLC and DSC analysis show a good correlation. The gel conversions obtained by HPLC and DMA agree well. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 497–504, 2003  相似文献   

16.
Rheokinetic and phase separation behavior of diglycidylether of bisphenol‐A–4,4′‐diaminodiphenyl methane epoxy mixtures, modified with a constant amount (15 wt %) of poly(methyl methacrylate) (PMMA), have been investigated. Stoichiometric epoxy/amine mixtures precured at 80°C several times presented various levels of miscibility. Differential scanning calorimetry (DSC) and dynamic mechanic thermal analysis were used for rheokinetic studies of curing and also for testing the thermal behavior of the fully cured mixtures. Phase separation, through curing, was simultaneously studied by transmission optical microscopy and DSC, showing an excellent correlation between the results obtained with both techniques. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 772–780, 1999  相似文献   

17.
The analysis of the chemorheological behavior of an epoxy prepolymer based on a diglycidylether of bisphenol‐A (DGEBA) with a liquid aromatic diamine (DETDA 80) as a hardener was performed by combining the data obtained from Differential Scanning Calorimetry (DSC) with rheological measurements. The kinetics of the crosslinking reaction was analyzed at conventional injection temperatures varying from 100 to 150°C as experienced during a Resin Transfer Molding (RTM) process. A phenomenological kinetic model able to describe the cure behavior of the DGEBA/DETDA 80 system during processing is proposed. Rheological properties of this low reactive epoxy system were also measured to follow the cure evolution at the same temperatures as the mold‐filling process. An empirical model correlating the resin viscosity with temperature and the extent of reaction was obtained to carry out later a simulation of the RTM process and to prepare advanced composites. Predictions of the viscosity changes were found to be in good agreement with the experimental data at low extents of cure, i.e., in the period of time required for the mold‐filling stage in RTM process. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4228–4237, 2006  相似文献   

18.
Multiwall carbon nanotubes were functionalized with epoxy groups by chemical modification in four stages. At each stage, the compound was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). Epoxy composite samples were prepared by mixing diglycidyl ether of bisphenol A‐based epoxy resin and synthetic epoxy‐functionalized multiwall carbon nanotube (E‐MWCNT) with different percentages (1, 3, 6, 9, 12, and 15%) in acetone. Ultrasonic dispersion was used to produce homogenous blends. The optimum ratio of the reacting components (9%) was investigated by total enthalpy of the curing reaction from differential scanning calorimetry (DSC) thermograms. The kinetics of the curing reaction for epoxy composites with 4,4′‐diaminodiphenylsolfon as a curing agent was studied by means of a DSC nonisothermal technique. The kinetic parameters such as activation energy, pre‐exponential factor, and rate constant were obtained from DSC data. The structure ofthe nanocomposites and dispersion of the E‐MWCNTs in the nanocomposites were observed using SEM, and the thermal properties were studied by thermogravimetric analysis. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

19.
The effect of the molar ratio of diglycidyl ether of a bisphenol‐A based epoxy (DGEBA) and synthesized 4‐phenyl‐2,6‐bis(4‐aminophenyl)pyridine (PAP) as curing agent during nonisothermal cure reaction by the Kissinger, Ozawa, and isoconversional equations was studied. The cure mechanism was studied by FTIR analysis. Kinetic analysis of the curing reaction of DGEBA at two different concentrations (42 and 32 phr) of the curing agent was studied by using DSC analysis. With an increasing PAP content, the pre‐exponential factor increased by increasing collision probability between epoxide and primary or secondary amine groups in noncataltyic or catalytic modes. The activation energy also increased because of the increasing content of crosslink density. The activation energies obtained from three equations were in good agreement. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3076–3083, 2007.  相似文献   

20.
Liquid and cured epoxy–phenolic lacquers used as can coatings were characterized. Tinplate was used as the base material, which was coated with lacquers of different epoxy to phenolic ratios (EPRs) from a commercial source. Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) were used together to obtain helpful information about the degree of curing and the composition of the lacquers. From FTIR analysis, we were able to infer that the lacquers were composed of a high‐molecular‐weight diglycidyl ether of bisphenol A type epoxy resin and a resol‐type phenolic resin. In addition, from FTIR spectra, we estimated the EPRs of lacquers applied on the tinplate and detected if they had been overcured. The EPRs of the applied lacquers were estimated also from DSC analysis. From TGA, we detected undercuring in the applied lacquers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1448–1458, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号