首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental study of the peroxide‐induced degradation of polypropylene in a corotating twin‐screw extruder, operating under various conditions, was reported. Runs were performed without and with peroxide in different concentrations. The evolution of the chemical reactions along the extruder was characterized by on‐line rheological measurements and by determination of the molecular weight of samples collected at the same locations. The results evidenced the relationships between peroxide concentration and processing conditions with rheological properties and molecular structure of the modified materials. The concept of chain‐scission distribution function elucidated the mechanisms involved in the thermomechanical degradation of PP, which is by chain scission and is dependent on the level of stress imposed by the screw elements, temperature, and concentration of hydrogen‐abstracting agents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91:2711–2720, 2004  相似文献   

2.
In this work, experimental and theoretical studies of the free‐radical initiated molecular weight degradation of polypropylene in a modular self‐wiping corotating twin screw extruder have been investigated. Our objective was to build a model that would be able to predict the evolution of the average molecular weight along the screws, in relation to the processing conditions and the geometry of the twin screw extruder. Modeling the process involves resolving interactions occurring between the various flow conditions encountered in the extruder, the kinetics of the reaction and the changes in viscosity with changes in molecular weight. We have studied the influence of operating parameters such as the initial peroxide concentration, the feed rate and the screw speed on the degradation reaction. Good agreement was found between theoretical results and experimental values obtained by size exclusion chromatography measurements.  相似文献   

3.
In the present work, experimental studies of the free‐radical‐initiated molecular weight degradation of polypropylene in a modular self‐wiping corotating twin‐screw extruder are investigated. The control of the molecular weight distribution of polypropylene resins by peroxide degradation is widely used in the polymer industry. It allows one to adjust the viscosity of these resins to the level required for processing applications. The purpose of this work was to characterize the influence of peroxide degradation on the rheological behavior of a polypropylene homopolymer and a block polypropylene/polyethylene copolymer, which includes an addition of a low percentage of polyethylene (around 7%). The homopolymer exhibits a classical behavior: When the peroxide amount is increased, we observe a decrease in the viscosity corresponding to a decreasing molecular weight and a pronounced shift toward more Newtonian behavior. The rheological behavior of the copolymer is influenced by the presence of the polyethylene phase which greatly modifies the viscoelastic properties and increases the viscosity when the polypropylene matrix is highly degraded. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1243–1252, 2001  相似文献   

4.
The chemical modification of isotactic polypropylene was performed by the free‐radical‐promoted grafting of 1,1,1‐trimethylolpropane trimethacrylate (TMPTMA) in the presence of dicumyl peroxide (DCP) as the initiator. The reaction was carried out both in a batch internal mixer and in a corotating twin‐screw extruder; the effects of the peroxide and monomer concentrations on the extent of modification in terms of the grafting efficiency and polymer chain structure variations were investigated. The modified samples were characterized with Fourier transform infrared to determine the structure of the grafted groups and the degree of functionalization, with gel permeation chromatography and the melt flow index to evaluate changes in the molecular weight, and with differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical thermal analysis to measure the final thermal properties. In addition, solvent extraction with xylene was performed to highlight the presence of gel and its extent. The structure of the grafted groups was determined, and the number of grafted groups was quantitatively evaluated. The degree of functionalization increased with an increasing TMPTMA/DCP molar ratio. Thermal analysis results hinted at the presence of grafted chains with an increased percentage of TMPTMA. Although degradation reactions predominated at high amounts of peroxide, grafting and branching processes became competitive at high levels of TMPTMA. The balance between competing β‐scission and grafting/branching reactions could be adjusted on the basis of feed conditions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 950–958, 2007  相似文献   

5.
A new method using high‐intensity ultrasonic waves, instead of peroxide‐aided reactive extrusion, was applied to modify a linear polypropylene into a branched structure. The ultrasonic waves induced chain scission and created reactive macromolecules of polypropylene successfully in the melt state without any peroxide. To enhance and control the recombination reaction during sonication, a multifunctional agent and an antioxidant were used. The rheological property measurements clearly confirmed that the modified polypropylene had a nonlinear branched structure. It showed shear‐thinning behaviors in its viscosities at low frequencies, high elastic behaviors in Cole–Cole plots, and a high rheological polydispersity index in comparison with a linear polypropylene. The degradation or recombination of polypropylene was adequately controlled by an antioxidant, which stabilized the structure during sonication. Also, the use of an antioxidant was quite effective in improving the extrusion processability by delaying the instability of the extrudate to a higher shear rate. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

6.
The effect of modifying polypropylene by the addition of long‐chain branches on the rheological properties and performance of foam extrusion was studied. Three polypropylenes, two long‐chain‐branched polypropylenes and a linear polypropylene, were compared in this study. The modification was performed with a reactive‐extrusion process with the addition of a multifunctional monomer and peroxide. The rheological properties were measured with a parallel‐plate and elongational rheometer to characterize the branching degree. The change from a linear structure to a long‐chain‐branched nonlinear structure increased the melt strength and elasticity of polypropylene. Also, there was a significant improvement in the melt tension and sag resistance for branched polypropylenes. Foaming extrusion was performed, and the effect of the process variables on the foam density was analyzed with Taguchi's experimental design method. For this study, an L18(2135) orthogonal array was used on six parameters at two or three levels of variation. The considered parameters were the polypropylene type, the blowing agent type, the blowing agent content, the die temperature, the screw speed (rpm), and the capillary die length/diameter ratio. As a result, the most significant factor that influenced the foam density was the degree of long‐chain branching of polypropylene. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1793–1800, 2005  相似文献   

7.
Kinetic models of grafting maleic anhydride (MAH) and methyl methacrylate (MMA) on polypropylene (PP) were developed for screw extrusion. However, the kinetic models were insufficient to explain the grafting reactions along the length of modular co‐rotating twin screw extruders because the rheological properties and the residence time of PP changed owing to degradation of PP during the grafting reaction. In order to model this system for a modular co‐rotating twin screw extruder, the kinetic model of grafting reaction and models for degradation of PP were combined with fluid mechanics and heat transfer. Given the geometrical configurations of the screw, the operating conditions, and the physical properties of the polypropylene, the simulations predicted variation of molecular weight and mean residence time due to degradation of PP. The weight percent of grafted MAH or MMA on PP profiles along the screw axis was also calculated in the simulation. These predictions were compared with experimental data for various operating conditions. J. VINYL. ADDIT. TECHNOL. 11:143–149, 2005. © 2005 Society of Plastics Engineers.  相似文献   

8.
Free radical grafting with methyl methacrylate onto molten polypropylene was investigated in both an internal mixer and a modular co‐rotating twin‐screw extruder. There has been little open literature on melt free radical grafting copolymerization of methyl methacrylate. There is also little information on the evolution of grafting reaction with respect to reaction time in an internal mixer and along the screw axes with methyl methacrylate. The influence of residence time on the degree of grafting in an internal mixer and a twin‐screw extruder was studied through measuring reaction yields with respect to reaction time in a mixer and evolution of reaction yield along the screw axis. The degree of grafting increased with initial monomer and peroxide concentration. The grafting reactions with three different peroxides were also investigated. The grafting levels were similar to maleic anhydride and suggested that only an individual methyl methacrylate unit be grafted. The melt viscosity was dramatically reduced with addition of peroxide. A kinetic scheme of our reaction system for methyl methacrylate was proposed and compared with the experimental results.  相似文献   

9.
In this investigation, the characteristics and the rheological properties of two different nanocomposite systems were investigated. These systems consisted of a dispersion of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) in a polypropylene (PP) matrix. The mixing process was carried out by melt compounding with a twin‐screw corotating extruder with different reinforcement amounts (0.2–20 wt %) from concentrated masterbatches (20 wt %) of PP/CNT and PP/CNF. The results show a remarkable increase in the viscosity for both blends as the reinforcement amount was increased. It was important to evaluate the rheological behavior to understand the effect of the nanocarbon particles on the internal structures and their processing properties of the obtained composites. CNFs were a more viable reinforcement from a processability point of view because the obtained viscosities of the PP/CNF blends were more manageable. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
The purpose of this work is to evaluate a new polypropylene (PP)‐based nitroxyl radical generator (NOR) and offer comparisons with a commonly used peroxide in the production of controlled‐rheology polypropylene (CRPP) resins. CRPP resins are produced by reactive processing in a batch mixer by using different amounts of either the NOR or a peroxide initiator at different temperatures. Molecular weight and rheological properties are determined for all CRPP produced and a comparison between the effectiveness of the NOR and the peroxide initiator is provided. POLYM. ENG. SCI., 47:2118–2123, 2007. © 2007 Society of Plastics Engineers  相似文献   

11.
A theoretical model for the cationization of plasticized wheat starch in a modular seIf‐wiping co‐rotating twin screw extruder was developed. Our objective was to build a model which would be able to predict the evolution of the cationization reaction along the screws, in relation with the processing conditions and the geometry of the twin screw extruder. Based on previous studies on reactive extrusion modeling, the present model takes into account the interactions occurring between the flow conditions encountered in the extruder and the kinetics of the reaction. It allows one to predict the influence of operating parameters such as reagent concentrations, feed rate, screw speed, and barrel temperature on the reaction extent. Depending on conditions, degrees of substitution in the range 0.01–0.05 are obtained, with efficiencies between 30 and 90%. A good agreement is found between theoretical results and experimental measurements, allowing future use of the model for optimization and scale‐up purposes. POLYM. ENG. SCI., 47:112–119, 2007. © 2007 Society of Plastics Engineers  相似文献   

12.
Two methods for the fabrication of polypropylene/clay nanocomposites using a continuous ultrasound assisted process are compared. In the first approach, a two‐stage process was implemented. The nanocomposites were prepared by using a corotating twin‐screw extruder followed by a single‐screw extruder equipped with an ultrasonic die attachment. In the second method, a single‐stage process was used. The nanocomposites were compounded by using a single‐screw extruder with mixing elements and an ultrasonic die attachment. Two regimens of feeding were realized, namely, starved and flood feeding. The gap size in the ultrasonic treatment zone was varied. Die pressure and power consumption were measured. Similarities and differences of nanocomposites obtained by these two methods are discussed on the basis of their rheological and mechanical properties and their structural characteristics. J. VINYL ADDIT. TECHNOL., 13:40–45, 2007. © 2007 Society of Plastics Engineers.  相似文献   

13.
A range of continuous mixing machines were used as continuous reactors for grafting maleic anhydride onto polypropylene. The machines used were (1) a nonintermeshing modular counterrotating twin‐screw extruder, (2) an intermeshing modular corotating twin‐screw extruder, (3) intermeshing modular counterrotating twin‐screw extruder, and (4) a Kobelco Nex‐T continuous mixer. The grafting reaction of maleic anhydride onto polypropylene and degradation of polypropylene during the grafting reaction were investigated as means for comparing these different machines for reactive extrusion. The influence of processing variables such as screw speed and processing temperature on polymer characteristics also was investigated. Generally, in a comparison of the different machines, the intermeshing counterrotating twin‐screw extruder had the lowest levels of grafted maleic anhydride, whereas the Kobelco Nex‐T continuous mixer under the conditions used had the highest levels of grafted maleic anhydride. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1755–1764, 2003  相似文献   

14.
The effect of the hydrogenation of the terminal vinyl groups on the peroxide modification and rheological properties of high‐density polyethylene (HDPE) was investigated. The aim of the study was to determine exclusively the effect of the terminal vinyl groups on the peroxide crosslinking and rheological properties of HDPE with one polymer type. This was achieved by hydrogenation of the terminal vinyl groups of a commercial HDPE to obtain an identical material from a structural point of view, which differed only in the nature of the terminal unsaturations, and the comparison of its level of peroxide crosslinking with that of the original polymer. Hydrogenated and unhydrogenated polymer samples were modified at 170°C with different amounts of organic peroxide ranging from 125 to 5000 ppm. Changes in the molecular structure were determined by Fourier transform infrared spectroscopy, size exclusion chromatography, and rheological measurements. Hydrogenation of the terminal groups of the original polymer significantly reduced the rate of modification or crosslinking. The dynamic viscosity and elasticity increased with the level of peroxide modification. Unhydrogenated samples exhibited rapid increases in viscosity and elastic modulus, whereas their hydrogenated counterparts required about 500% of the amount of peroxide needed for the unhydrogenated sample to attain similar structural changes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
As linear polyethylenes, ultrahigh‐molecular‐weight polyethylene (UHMWPE) and high‐density polyethylene (HDPE) have the same molecular structure, but the large difference in viscosity between them makes it difficult to obtain well‐mixed blends. An innovative eccentric rotor extruder (ERE) generating an elongational flow was used to prepare HDPE/UHMWPE blends within short processing times. Compared with the obvious two‐phase morphology of a sample from a twin‐screw extruder observed with a scanning electron microscope, few small UHMWPE particles were observed in the HDPE matrix for a sample from the ERE, indicating the good mixing on a molecular level of HDPE/UHMWPE blends achieved by the ERE during short processing times. The morphological changes of blends prepared using the ERE evidenced the good integration of HDPE and UHMWPE even though the UHMWPE content is up to 50 wt% in the blends. Moreover, all blends retained most of the intrinsic molecular weight. The good mixing was further confirmed from the thermal, crystallization and rheological behaviors determined using differential scanning calorimetry and dynamic rheological measurements. Importantly, the 50/50 blend presented improved mechanical properties, especially super‐impact strength of 151.9 kJ m?2 with incomplete‐break fracture state. The strengthening and great toughening effects of UHMWPE on the blends were attributed to the addition of unwrapped UHMWPE long molecular chains. The effective disentanglement mechanism of UHMWPE chains under elongational flow was explained schematically by a non‐parallel three‐plate model. © 2019 Society of Chemical Industry  相似文献   

16.
It is very challenging to obtain very large amounts of vinyl monomers grafted onto polymer backbones in the melt through a free‐radical mechanism. The objective of this study was to develop strategies that would allow one to maximize the amount of 3‐isopropenyl‐α,α‐dimethylbenzene isocyanate (TMI) grafted onto polypropylene (PP) by reactive extrusion processes. For that purpose, an internal batch mixer was used to simulate potential reactive extrusion processes. Two strategies were studied: The first one was to apply the comonomer concept developed in previous studies. More specifically, styrene (St) was used as a comonomer to control the grafting yield and the molar mass of TMI‐grafted PP. The second strategy delt with the feeding mode of the reactants. Two feeding modes were investigated: (a) one‐pot feeding, that is, the total amount of TMI, St, and a peroxide were premixed with PP and the whole mixture was then charged to the reactor at once; (b) stepwise feeding, that is, the total amount of TMI, St, and the peroxide was divided in several equal fractions. The first fraction of the mixture was premixed with PP and then charged to the reactor. After a certain reaction time, the other fractions were charged to the reactor one after another in certain time intervals. Both strategies were shown to be very good at maximizing free‐radical grafting reaction yields. They can be easily adopted if free‐radical grafting is to be carried out by reactive extrusion in a screw extruder. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1799–1807, 2003  相似文献   

17.
The use of phase‐transfer catalysts, with water‐insoluble initiators, for polymerization and graft copolymerization reactions was explored. The polymerization of a water‐soluble vinyl monomer, acrylamide (AAm), and the graft copolymerization of AAm onto a water‐insoluble polymer backbone, isotactic polypropylene (IPP), with a water‐insoluble initiator, benzoyl peroxide (BPO), and a phase‐transfer catalyst, tetrabutyl ammonium bromide (Bu4N+Br?), were carried out in a water/xylene binary solvent system. The conversion percentage of AAm into polyacrylamide (PAAm) and the percentage of grafting of AAm onto IPP were determined as functions of various reaction parameters, such as the BPO, AAm, and phase‐transfer‐catalyst concentrations, the amounts of water and xylene in the water/xylene mixture, the time, and the temperature. The graft copolymer, IPP‐g‐PAAm, was characterized with IR spectroscopy and thermogravimetric analysis. By a comparison of the results of the phase‐transfer‐catalyzed graft copolymerization of AAm onto IPP and the preirradiation method, it was observed that the optimum reaction conditions were milder for the phase‐transfer‐catalyst‐aided graft copolymerization. Milder reaction conditions, including the temperature, the time of reaction, and a moderate initiator (BPO), in comparison with high‐energy γ‐rays, led to better quality products, and the reaction proceeded smoothly with high productivity. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2364–2375, 2004  相似文献   

18.
Maleic anhydride grafting onto polypropylene was conducted in a twin‐screw extruder according to an experimental design in which the maleic anhydride and peroxide concentrations were varied. The modified polypropylene was characterized by FTIR spectroscopy, melt‐flow index measurements, size‐exclusion chromatography, differential scanning calorimetry, and nuclear magnetic resonance. The results showed that only the independent variable peroxide concentration influenced the amount of reacted maleic anhydride, whereas the two variables studied influenced the molecular weight of the grafted polypropylene. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2706–2717, 2002  相似文献   

19.
This paper deals with (maleic anhydride)‐grafted polypropylene (MAH‐g‐PP) and wood flour reinforcement and their effects on the dynamic, mechanical, morphological, and rheological properties of waste polypropylene (PP) composites. MAH‐g‐PP was used as a compatibilizer to improve the physical interaction between the filler and matrix. The composites were prepared by using a twin‐screw extruder followed by injection molding. Thermal stability and mechanical properties of the compatibilized system increased as compared to their values for the uncompatibilized system. Also, nearly 60% and 30% loss was found for mechanical properties and weight loss, respectively, in a biodegradability study. J. VINYL ADDIT. TECHNOL., 20:24–30, 2014. © 2014 Society of Plastics Engineers  相似文献   

20.
Using reactive extrusion, polypropylene is functionalized with maleic anhydride and compared on an equimolar basis to polypropylene that is functionalized with an asymmetric, carboxylic acid containing peroxide. The grafting efficiency for the asymmetric peroxide is double that obtained for the maleic anhydride system. Moreover, the asymmetric peroxide yields a functionalized material with minimal molecular weight degradation and desirable mechanical properties, relative to maleic anhydride‐grafted polypropylene. In compatibilized blends of polypropylene and nylon 6,6, the polypropylene that was functionalized with the asymmetric peroxide is found to be an improved compatibilizer compared to that of maleic anhydride‐grafted polypropylene. The differences in mechanical properties of the two different functionalized polypropylene materials and their respective blends are rationalized on the basis of the grafting efficiency, molecular weight degradation during reactive extrusion, and effect of free functional species on the ability to form graft copolymers in compatibilized blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2398–2407, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号