首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The utilization of a slug calorimeter to evaluate the thermal performance of fire resistive materials (FRMs) is presented. The basic specimen configuration consists of a ‘sandwich’, with a square central stainless‐steel plate (slug) surrounded on two sides by the FRM. This sandwich configuration provides an adiabatic boundary condition at the central axis of the slug plate that greatly simplifies the analysis. The other four (thin) sides of the steel plate (and FRM specimens) are insulated using a low thermal conductivity fumed‐silica board. Two metal plates manufactured from a high temperature alloy provide a frame for placing the entire sandwich specimen slightly in compression. The entire configuration is centrally placed at the bottom of an electrically heated box furnace and the temperatures of the metal slug and exterior FRM surfaces are monitored during multiple heating and cooling cycles. Knowing the heat capacities and densities of the steel slug and the FRM, an effective thermal conductivity for the FRM can be estimated. The effective thermal conductivity of the FRM will be influenced by its true thermal conductivity and by any endothermic or exothermic reactions or phase changes occurring within the FRM. Preliminary tests have been conducted on two commonly used FRMs and on a non‐reactive fumed‐silica board to demonstrate the feasibility of the method. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

2.
Based on a comparison between the measured and the calculated temperature evolutions within a gypsum plaster board subject to fire, a numerical parameter study regarding the material properties of gypsum at elevated temperatures has been carried out. This allowed quantifying the individual influence of different quantities and their deviations on the calculated thermal behaviour of this material. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
A rigorous microstructural analysis of porous mullite materials developed using novel shaping strategies based on the starch consolidation casting, and their thermal properties in relation to the processing and starch type were accomplished in view of their use as thermal insulators. In order to characterize the size and morphology of pore, basic size and 2D shape factors, and global 3D stereological parameters were determined using microscopy techniques. Results indicated that the porosity volume, pore connectivity degree, and mean free path were the determining factors of the lowest heat transfer by conduction registered in materials prepared with cassava starch. This material is the best candidate to be used in thermal insulation.  相似文献   

4.
使用聚乙烯吡咯烷酮(PVP)和聚乙二醇(PEG)作为钝化剂对铜纳米颗粒进行原位包覆制备了PVP/PEG/Cu复合纳米粒子(CuNP),将其作为导热增强剂引入到PEG中制备了CuNP/PEG固-液相变储能材料(PCMs),并通过FTIR、XRD、DSC以及TGA等表征了CuNP/PEG固-液PCMs的结构及热性能。利用纳米粒子表面的PVP与PEG之间的氢键和空间位阻效应,以及PVP对铜核的保护作用,赋予了铜纳米粒子在PCMs中优异的分散稳定性。结果表明,CuNP的引入能够显著提高复合相变储能材料的导热能力,并能够作为晶核加速材料的结晶行为。当纳米粒子的质量分数为5%时,CuNP/PEG固-液PCMs的相变焓值为157.0 J/g,体系的储热速率、放热速率和结晶速率与纯PEG相比分别提高了34.09%、31.45%和53.33%。  相似文献   

5.
Miao Tian  Jun Li 《火与材料》2017,41(1):40-53
To investigate the differences of thermal response between heat flux sensors and human skin on the flame manikin, a three‐dimensional heat transfer model was developed and validated by the flame manikin system. The initial temperature of the model with sensor material was set to 300 K, and the model with skin material was set as the real condition. Simulated results validated the effectiveness of heat flux measured by the sensor. The incident heat flux through the measured surface was influenced by the different emissivity of the human skin and experimental sensors. Significant difference was found for the temperature response of these two kinds of materials within 4‐s fire exposure. The heat flux measured by sensor or the simulated results with actual human skin parameters could be used as the input boundary condition of the skin heat transfer model for Henriques's skin burn prediction. It is necessary to study the actual skin thermal response by experiments, where the 3D model established in this study could be used as the supplementary means for skin simulant sensor development. These findings will also be adopted in our following study of skin burn prediction module in the 3D full‐scale simulation platform. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
In the study, an A36 steel board, a frequently used building construction material, was heated to a high temperature, and then a metallographic replication experiment and tensile experiment were performed to obtain the composition and proportion of the microstructure and the mechanical behavior of fire‐damaged steel boards. When the steel board was heated to 800°C or higher and then rapidly water cooled, significant changes were found in its composition and proportion. More specifically, pearlite was completely lost, ferrite was reduced from 80% to 30%, bainite was increased to 30%, and martensite was also increased to 40%. The significant increase in the martensite phase altered the structure of the fire‐damaged steel board by making its structure more delicate and loose. Even though the yielding strength and tensile strength showed a tendency to increase, element ductility dropped from 32.5% to 15%. Reducing the extensibility substantially can make the steel board more likely to crack suddenly. The aim of the study is using changes in the structure and mechanical behavior of these steel components because of high‐temperature burning to reconstruct fire spread in fire investigation technology.  相似文献   

7.
The transient plane source (TPS) method is shown to be very promising for determining thermal properties of materials at room temperature as well as temperatures up to 700°C. To investigate the applicability of the method it has been used in the study for determining thermal properties of wood (spruce) and concrete. Conductivity (λ) and diffusivity (α) were determined simultaneously. The thermal properties thus obtained have been compared with some values found in literature. The paper also presents results where calculations using properties obtained with the TPS method are compared with fire test measurements. The results are very encouraging. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
于强  鹿院卫  张晓盼  吴玉庭 《化工学报》2019,70(Z1):217-225
为了得到SiO2纳米粒子含量对SiO2/NaNO3-KNO3/EG复合蓄热材料比热容和热导率的影响,通过机械分散法,采用NaNO3-KNO3和不同质量分数(0.1%,0.5%,1%,2%,3%)的SiO2纳米粒子所形成的熔盐纳米材料作为蓄热材料,膨胀石墨(EG)作为基体材料,制备出纳米SiO2/NaNO3-KNO3/EG复合材料。对复合材料的比热容和热导率进行了测量,同时用扫描电镜对其微观结构特征进行了分析。结果表明,SiO2纳米粒子的质量分数为1%时,复合材料的平均比热容和热导率分别为3.92 J/(g·K)和8.47 W/(m·K),与其他纳米SiO2添加比例相比,其比热容和热导率分别提高了1.37~2.17倍和1.7~3.2倍。这是由于复合材料表面会形成高密度的网状结构,这种具有较大比表面积和高表面能的特殊纳米结构可以提高复合材料的比热容和热导率。  相似文献   

9.
刘慧  李亚冰  陈文仲 《耐火材料》2012,46(4):267-269,274
采用蓄热式高温空气燃烧技术代替传统塔式锌精馏炉方孔式陶土换热器技术,并对蓄热室的部分材料进行改进。用热导率较高的耐热钢小球代替部分蓄热体,并采用数值模拟对改进后的蓄热室温度分布及功率的变化进行考查。结果表明,蓄热室内温度分布的均匀性明显提高,尾部蓄热室传热效果增强。高温段向尾部偏移,有效利用了蓄热室的尾部区域,且预热空气温度得到显著提高。  相似文献   

10.
The fire behavior of various large samples polymers assemblies is an under‐researched topic. In fire risk assessment, the resultant heat release rate of burning different combustibles has to be known. To highlight interactions between components, 2 types of configurations were tested: juxtaposed and layered materials, using a specific radiant panel setup. For juxtaposed assemblies, results indicated that the more flammable component acted as an accelerator for the global combustion kinetics. For layered assemblies, 2 main phenomena were evidenced: the front material acted as a shield delaying the combustion of the backside material and the presence of a backside material induced a thermal thickening that slowed down the combustion of the front material. The experimental burning behaviors of the assembly were compared with a simulated one calculated from the superposition principle. This method was described by introducing a time offset and/or a slowdown factor in the model, confirmed with the use of different assemblies.  相似文献   

11.
Based on the well-known solution of Maxwell [1] for the thermal conductivity of dilute dispersions of spheres and the improved form of Maxwell’s equation developed by Chiew and Glandt [2], two general correlation for keff estimation are proposed. One of them apply to medium dense dispersions (0.15≤φ≥0.85) and the other one for dense porous materials (φ>0.9). Both correlating equations encompass a wide range of phase conductivity ratio values. The comparison with experimental measurements shows very good agreement.  相似文献   

12.
A method has been proposed to provide a means to compare in a quantitative and comprehensive way the mechanical performance of fire protective fabrics under long-term thermal exposure. These high-performance materials experience a reduction in their performance overtime due to the various conditions they are exposed to during the lifetime of the clothing. The proposed method consists in a system of two equations fitting the time–temperature-performance data: the Arrhenius model combined with the time–temperature superposition principle, and the three-parameter Hill equation. The result of the data analysis using this method is provided in terms of four parameters: the temperature effect, the time rate, the degradation midpoint time, and the ultimate strength. It was used to compare the effect of accelerated thermal aging on the tear strength of seven different fabrics used in fire protective clothing. In all cases, a very good agreement was observed with both the Arrhenius model and the Hill equation. However, none of the fabrics studied appeared to stand as displaying all the characteristics that would be ideal for long-term fire protection. The best solution is thus a compromise that will depend on the type of activity conducted and the type of conditions experienced. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47045.  相似文献   

13.
A new test methodology was developed to investigate the response of walls, partitions, and in-wall systems exposed to real fires. The apparatus includes a 3.5 m long, 2.3 m wide, and 2.3 m high fire compartment within a standard sea container. A wall specimen measuring up to 1.8 m wide, 1.8 m tall, and 0.3 m deep is mounted in a steel frame at one end of the fire compartment. Fire exposures to the wall specimen evolve over time depending on the fuel load and ventilation configuration. Gas temperatures and heat flux were characterized for five different fuel and ventilation configurations. Peak exposures ranged from 30 to 75 kW/m2 for about 20 minutes. Five additional tests were conducted using a single fuel and ventilation configuration to assess the repeatability of the test methodology. It was found that a 19.3 minute growth period occurred plateauing at a ceiling temperature of 708°C for 8.4 minutes, on average. Compartment gas temperatures were found to be repeatable, having a sample standard deviation less than 32°C for symmetric data. Repeatability improved when account was taken for the rapid fire growth inflection point. The utility of the approach for studying fire performance of building elements was demonstrated.  相似文献   

14.
The use of polymeric building materials has been grown in many countries of Middle East in recent years. However, there are only a few fire testing laboratories in this region. Therefore, development of a method for controlling the reaction to fire of materials with bench scale tests is necessary. Providing a framework for classification of thermal fire hazard of materials based on bench scale heat release rate results was attempted. The fire behavior of 10 polymeric building materials was tested with cone calorimeter. The relationship between reaction to fire variables and physical properties of tested samples was examined. The thermal fire hazards of materials were assessed using methods presented by different researchers and with Conetools software. The results revealed that time to ignition, peak rate of heat release, and total heat release are essential variables for determining the fire hazard of materials. A classification method is proposed, which can be used in building codes in countries where the full‐scale test facilities are not available. The method also can be used for quality control purpose and evaluation of fire behavior of materials in bench scale by manufacturers. An example of potential requirements for interior finishes for some occupancy types is also presented. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Thermal liners play a critical role in thermal protective performance for firefighter gear. Effective engineering of textile material is necessary to enhance this protective performance. A modified thermal protective erformance (TPP) tester was used to study the influence of incorporating aerogel and microencapsulated phase change materials (MPCMs) in thermal liners (including a traditional thermal liner, phase‐change layer, and aerogel layer) and the relevant parameters associated with enhanced thermal liner performance. Two different phase‐transition temperature (45°C and 50°C) of MPCM were selected. The samples were exposed to a medium intensity radiation of 15 kW/m2 for 240 seconds, and a skin burn model was applied for second‐degree burn prediction. Given the selected, results showed that the best TPP in this study was achieved when the phase‐transition temperature of MPCM was 45°C and the layering order consisted of the traditional thermal layer (closest to heat source), followed by an aerogel layer, and a final MPCM layer. The predicted second‐degree burn time was 218.3 seconds and increased by 90% compared with only containing traditional thermal liner with a thickness of 5 mm. For all 3 materials contained in the thermal liner, the relationship between absorbed energy and predicted second‐degree skin burn time indicated that they had a remarkable negative linear correlation (R2 was 0.9792). The experimental data and predicted results were in good agreement, with a correlation coefficient (R2) of 0.9911. The findings provide a scientific basis for future textile engineering and a novel approach to improve TPP.  相似文献   

16.
The current work proposes for the first time an integrated set of simplified correlations for the thermal properties, i.e. effective thermal conductivity, effective specific heat and effective density, of commercial gypsum boards as a function of temperature that can be easily incorporated in dedicated computational tools in order to simulate the fire behavior of a gypsum board. The proposed correlations are based on experimental data purposely performed in the frame of this work, as well as on literature experimental data and theoretical approximations. The applicability and the accuracy of the correlations are established by simulating the fire behavior of various types of gypsum boards exposed to different fire conditions. For the validation of the developed correlations, an in‐house developed code is utilized, taking into account thermal properties produced by the proposed correlations. The predictions are compared with two published sets of experimental data, as well as with one experimental data set performed in the current work. The results indicate that the proposed correlations can be reliably utilized in computational tools in order to accurately predict the fire behavior of commercial gypsum boards. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Ziqing Yu  Aixi Zhou 《火与材料》2014,38(1):100-110
This study evaluates the effect of flame heat flux on the prediction of thermal response and fire properties of a char‐forming composite material. A simplified two‐layer flame model was developed and incorporated into a heat transfer thermal model to predict the thermal response and fire reaction characteristics of a burning material. A typical char‐forming material, E‐glass reinforced polyester composite, was used in the study. A cone calorimeter was used to measure the fire reaction characteristics of the composite. The flame heat flux in a cone calorimeter test setup was estimated using the simplified flame model. Thermal response and fire property predictions with and without the effect of flame heat flux were compared with experimental data obtained from the cone calorimeter tests. Results showed that the average flame heat flux of the composite in a cone calorimeter was 19.1 ± 6 kW/m² from model predictions. The flame had a significant effect on the thermal response and fire properties of the composite around the first heat release peak but the effect decreased rapidly afterwards. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
以聚乙二醇(PEG)为相变材料,以3-氨丙基三乙氧基硅烷(APS)改性的二氧化硅(SiO2)为支撑材料,以氧化壁碳纳米管(O-CNTs)为导热增强材料,采用溶胶-凝胶法成功制备了PEG/APS-SiO2/O-CNTs导热增强型复合相变材料。通过FTIR、XRD、SEM、DSC等对材料的结构和热性能进行了表征。当PEG含量为82.0%时,复合相变材料仍然具有良好定型效果,熔化焓和结晶焓达到134.2 J/g、126.6 J/g,而且材料具有很好的储热稳定性,300次热循环后,其储热焓值仅下降3.3%。相比于纯PEG,添加了0.6%的O-CNTs的复合相变材料的导热增强率为28.1%, 达到0.41W/(m?K)。红外热成像结果表明,复合相变材料的储能效率明显提高。  相似文献   

19.
The fire structural response of sandwich composite laminates incorporating bio‐derived constituents subjected to a turbulent flaming fire was investigated. Fire structural tests were conducted on thermal insulated sandwich composites incorporating a thin surface‐bonded non‐woven glass fibre tissue impregnated with char‐forming fire retardant, ammonium polyphosphate. The sandwich composite laminates were loaded in compression at 10%, 15% or 20% of the ultimate compressive strength while simultaneously subjected to turbulent flames imposing an incident heat flux of 35 kW/m2. Generally, the failure time increased with the reduced applied compressive load. The thermal insulated sandwich composite laminates had considerably improved fire resistance in comparison to their unmodified counterparts. The unmodified composites failed 96 s earlier than the thermal insulated specimens when the compression load was 10% of the ultimate compressive strength. The presence of ammonium polyphosphate at the heat‐exposed surface promoted the formation of a consolidated char layer, which slowed down heat conduction into composite laminate substrate. The fire reaction parameters measured via the cone calorimeter provided insights into the thermal response hence fire structural survivability of sandwich composite laminates. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The fire protection and thermal stability properties of intumescent fire-retardant coatings filled with three various clay nano-fillers (layer double hydroxide [LDH], montmorillonite [MMT], and sepiolite) were compared by fire protection tests and thermo-gravimetric analysis. The fire protection tests show that the incorporation of three fillers improves the fire protection properties of the intumescent fire-retardant coatings and the addition of 1 wt% sepiolite exhibits the lowest flame spread rating of 9.9 and equilibrium backside temperature of 164.5°C at 900 seconds. TG analysis shows that the incorporation of nano-fillers imparts a considerable enhancement of thermal stability and char formation to the intumescent coatings. Especially, the coating with 1 wt% sepiolite acquires the highest residual weight of 34.2% among the samples. Char residue analysis presents that the introduction of clay nano-fillers plays a positive role in enhancing the compactness and anti-oxidation ability of the char residues, and this positive effect as well as the flame-retardant efficiency depends on the types of clay nano-fillers. The three types of layered clay nano-fillers exhibit synergistic flame-retardant effectiveness in the order of sepiolite > MMT > LDH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号