首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the present work was to assess the blood compatibility of monomethoxy (polyethylene glycol)‐poly (D ,L ‐lactic‐co‐glycolic acid)‐monomethoxy (polyethylene glycol) (MeO‐PEG‐PLGA‐PEG‐OMe, PELGE) triblock copolymer as a propriety material for intravenous use in vitro. Three different proportional triblock copolymers were synthesized. According to the International Standard Organization (ISO) and US Pharmacopoeia XXIII recommendations, siliconized glass tube was used as the negative control sample, while nonsiliconized glass tube was used as the positive control. The blood compatibility of the films of poly (D ,L ‐lactic and glycolic acid) (PLGA) was evaluated by dynamic clotting time, activated partial thromboplastin time (APTT), and plasma recalcification time (PRT) measurements, platelet adhesion investigation, and hemolytic ratio analysis. The results revealed that blood compatibility of the materials was good. Nanoparticles made by this kind of materials might be promising for intravenous use. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1019–1023, 2006  相似文献   

2.
A two‐step direct melt copolymerization process of l ‐lactic acid (L ‐LA)/glycolic acid (GA) was developed: poly(l ‐lactic acid) (PLLA) and poly(glycolic acid) (PGA) with different molecular weight was first synthesized respectively by binary catalyst (tin chloride/p‐toluenesulfonic or tin chloride); and then poly(l ‐lactic‐co‐glycolic acid) (b‐PLGA) was produced by melt polymerization of the as‐prepared PLLA and PGA, wherein the composition and chain structure of b‐PLGA copolymers could be controlled by the molecular weight of PLLA. The chain structure and thermal properties of copolymers were studied by Wide‐angle X‐ray diffraction, nuclear magnetic resonance, differential scanning calorimetry, and thermogravimetric analysis. In comparison with the random PLGA (r‐PLGA) synthesized by one‐step direct melt polymerization, the average l ‐lactic blocks length (LLA) in b‐PLGA was longer while the average glycolic blocks length (LGA) in b‐PLGA was shorter which further resulted in the improved crystallinity and thermostability. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41566.  相似文献   

3.
Poly(glutamic acid‐co‐lactic acid‐co‐glycolic acid) (PGLG), an amphiphilic biodegradable copolymer, was synthesized by simply heating a mixture of L ‐glutamic acid (Glu), DL ‐lactic acid, and glycolic acid with the present of stannous chloride. The unique branched architecture comprising of glutarimide unit, polyester unit, and polyamide unit was confirmed by NMR spectrum. The PGLG was soluble in many organic solvents and aqueous solution of sodium hydroxide (pH ≥ 9.0). The thermal properties were evaluated using thermogravimetric analysis and differential scanning calorimetry. Molecular weights were determined by 1H NMR end‐group analysis and GPC, respectively, and the results indicated that the higher Glu content resulted in a decrease of the molecular weight. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Different strategies have been explored for the purpose of autologous or allogeneic dermal regeneration. We have developed a hybrid matrix by lyophilizing collagen within a poly[(lactic acid)‐co‐(glycolic acid)] (10:90, molar composition) knitted mesh, in order to assimilate the advantages of natural and synthetic materials. The porosity of the mesh was found to be almost 95 %, using Micro‐Computed Tomography Analysis, while the mechanical properties were comparable to native skin. In vitro biocompatibility was analyzed by culturing rat dermal fibroblasts in the matrices over 10 days. The cells were able to attach, proliferate and remain viable within the hybrid matrices. Subsequently, in vivo biocompatibility was analyzed by implanting the matrices subcutaneously in immunocompetent rats, for 2 weeks. Histological analysis showed that the poly[(lactic acid)‐co‐(glycolic acid)]–collagen hybrid matrices evoked minimal host tissue response in vivo. This study forms the basis of using poly[(lactic acid)‐co‐(glycolic acid)]–collagen hybrid matrices for our future work to develop a bioactive matrix for dermal regeneration. Copyright © 2005 Society of Chemical Industry  相似文献   

5.
The optimal synthetic conditions of poly(lactic acid‐co‐glycolic acid) (PLGA) via melt copolycondensation directly from L ‐lactic acid (L ‐LA) and glycolic acid (GA) with a feed molar ratio of 50/50 are discussed; the important drug‐delivery carrier PLGA50/50 is used as a special example. With reaction conditions of 165°C and 70 Pa and with 0.5 wt % SnCl2 as the catalyst, 10 h of polymerization gave the L ‐PLGA50/50 with the biggest intrinsic viscosity ([η]), 0.1993 dL/g. The optimal synthetic conditions were verified by the synthesis of D,L ‐PLGA50/50 with D,L ‐lactic acid (D,L ‐LA) instead of L ‐LA, but the biggest [η] was 0.2382 dL/g. Under the same synthetic conditions with L ‐LA and D,L ‐LA as starting materials, serial PLGA with different molar feed ratios, including 100/0, 90/10, 70/30, 50/50, 30/70, 10/90, and 0/100, were synthesized via simple and practical direct melt copolycondensation, and their solubilities were investigated. When the glycolic acid feed molar percentage was equal to or more than 70%, solubilities in tetrahydrofuran and CHCl3 became worse, and some samples were even wholly insoluble. These biodegradable polymers were also systematically characterized with gel permeation chromatography, Fourier transform infrared spectroscopy, 1H‐NMR spectroscopy, differential scanning calorimetry, and X‐ray diffraction. PLGA synthesized from L ‐LA and D,L ‐LA had many differences in weight‐average molecular weight (Mw), glass‐transition temperature, crystallinity, and composition. When the molar feed ratio of LA to GA was 50/50, both the [η] and Mw values of D,L ‐PLGA were higher than those of L ‐PLGA. With D,L ‐LA as the starting material, the structure of the PLGA copolymer was relatively simple, and its properties were apt to be controlled by its GA chain segment. When the feed molar percentage of the monomer (LA or GA) was more than or equal to 90%, the copolymer was apt to be crystalline, and the aptness was more obvious for the L ‐LA monomer. The composition percentage of GA in PLGA was not only higher than the feed molar percentage of GA, but also, the GA percentage in D,L ‐PLGA was higher than in L ‐PLGA. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 244–252, 2006  相似文献   

6.
Poly(L ‐lactic acid‐co‐succinic acid‐co‐1,4‐butanediol) (PLASB) was synthesized by a direct condensation copolymerization of L ‐lactic acid, succinic acid (SA), and 1,4‐butanediol (BD) in bulk state using titanium(IV) butoxide (TNBT) as a catalyst. Weight average molecular weight (Mw) of PLASB increased from 3.5 × 104 to 2.1 × 105 as the content of SA and BD went up from 0.01 to 0.5 mol/100 mol of L ‐lactic acid (LA). PLASB having Mw in the range from 1.8 × 105 to 2.1 × 105 showed tensile properties comparable to those of commercially available poly(L ‐lactic acid) (PLLA). In sharp contrast, homopolymerization of LA in bulk state produced PLLA with Mw as low as 4.1 × 104, and it was too brittle to prepare specimens for the tensile tests. Mw of PLASB synthesized by using titanium(IV)‐2‐ethyl(hexoxide), indium acetate, indium hydroxide, antimony acetate, antimony trioxide, dibutyl tin oxide, and stannous‐2‐ethyl 1‐hexanoate was compared with that of PLASB obtained by TNBT. Ethylene glycol oligomers with different chain length were added to LA/SA in place of BD to investigate effect of chain length of ethylene glycol oligomers on the Mw of the resulting copolymers. Biodegradability of PLASB was analyzed by using the modified Sturm test. Toxicity of PLASB was evaluated by counting viable cell number of mouse fibroblast cells that had been in contact with PLASB discs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 466–472, 2006  相似文献   

7.
The novel amphoteric, pH‐sensitive, biodegradable poly([chitosan‐g‐(L ‐lactic‐co‐citric) acid]) hydrogel (CLC) was synthesized through the reaction of chitosan (CS) with poly(L ‐lactic‐co‐citric acid) (PLCA). The structure of CLC was characterized by Fourier transform infrared spectroscopy, elemental analysis, and wide‐angle X‐ray diffraction measurement. The degree of substitution of CS amino groups was evaluated from salicylaldehyde analysis. The swelling behavior of CLC film in an aqueous solution with various pHs and the apparent swelling kinetics were studied. The swelling mechanisms of CLC film in acidic and alkaline mediums are discussed. The results showed that CLC hydrogel had a higher degree of swelling in the pH range of 4 > pH > 8 and that the swelling rate order in different buffers was neutral > acidic > basic mediums. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3850–3854, 2003  相似文献   

8.
A family of newly synthesized monomethoxy (polyethylene glycol)‐poly (D ,L ‐lactic glycolic acid)‐ monomethoxy(polyethylene glycol) (MeO‐PEG‐poly (D ,L ‐lactic‐co‐glycolic acid)‐PEG‐OMe, PELGE) biodegradable polymers are candidates for intravenous nanoparticle drug, because of their merits of biocompatibility and blood compatibility, and their capability of escaping from the endothelium system (RES) and adsorbing proteins. In the current research, relationships between composition, cytotoxicity, and hemocompatibility of a series of blank PELGE nanoparticles were investigated. Cytotoxicity on Chang cell lines was investigated using the methyl thiazolyl tetrazolium (MTT) assay. Human and rabbit blood were used in studies of red blood cell hemolysis, whole blood clotting time, plasma recalcification profiles, and red blood cell form and appearance in whole blood. The results suggested that the molecular weight of PEG used in the synthesis of polymers influenced their characteristics. Generally, as the molecular weight of PEG increased, increased cytotoxicity and hemocompatibility were observed. The RGR (relative growth rate) of PELGE nanoparticles synthesized with PEG 550 was above 70%, while that of PELGE nanoparticles synthesized with PEG 750 and PEG 2000 was in the range of 55–105% and 36–87% respectively. For PELGE nanoparticles synthesized with PEG 550, most hemolysis values were in the range of 1–3%, while for PELGE nanoparticles synthesized with PEG 750 and PEG 2000 hemolysis values were 1–2% and below 2%, respectively. None of the nanoparticles caused changes in red blood cell form or appearance. Based on the results, 12 kinds of PELGE were chosen for further studies. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci 113: 2933–2944, 2009  相似文献   

9.
Optically active poly(L ‐phenyllactic acid) (Ph‐PLLA), poly(L ‐lactic acid) (PLLA), and poly(L ‐phenyllactic acid‐co‐L ‐lactic acid) with weight‐average molecular weight exceeding 6 × 103 g mol?1 were successfully synthesized by acid catalyzed direct polycondensation of L ‐phenyllactic acid and/or L ‐lactic acid in the presence of 2.5–10 wt % of p‐toluenesulfonic acid. Their physical properties and crystallization behavior were investigated by differential scanning calorimetry, thermogravimetry, and polarimetry. The absolute value of specific optical rotation ([α]) for Ph‐PLLA (?38 deg dm?1 g?1 cm3) was much lower than that of [α] for PLLA (?150 deg dm?1 g?1 cm3), suggesting that the helical nature was reduced by incorporation of bulky phenyl group. PLLA was crystallizable during solvent evaporation, heating from room temperature, and cooling from the melt. Incorporation of a very low content of bulky phenyllactyl units even at 4 mol % suppressed the crystallization of L ‐lactyl unit sequences during heating and cooling, though the copolymers were crystallizable for L ‐phenylactyl units up to 6 mol % during solvent evaporation. The activation energy of thermal degradation (ΔEtd) for Ph‐PLLA (200 kJ mol?1) was higher than that for PLLA (158 kJ mol?1). The ΔEtd for the copolymers increased with an increase in L ‐phenyllactyl unit content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Random copolyester namely, poly(ethylene terephthalate‐co‐sebacate) (PETS), with relatively lower molecular weight was first synthesized, and then it was used as a macromonomer to initiate ring‐opening polymerization of l ‐lactide. 1H NMR quantified composition and structure of triblock copolyesters [poly(l ‐lactic acid)‐b‐poly(ethylene terephthalate‐co‐sebacate)‐b‐poly(l ‐lactic acid)] (PLLA‐PETS‐PLLA). Molecular weights of copolyesters were also estimated from NMR spectra, and confirmed by GPC. Copolyesters exhibited different solubilities according to the actual content of PLLA units in the main chain. Copolymerization effected melting behaviors significantly because of the incorporation of PETS and PLLA blocks. Crystalline morphology showed a special pattern for specimen with certain composition. It was obvious that copolyesters with more content of aromatic units of PET exhibited increased values in both of stress and modulus in tensile test. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
A novel class of pseudo‐poly(amino acid)s was synthesized with a cyclic dipeptide as new diphenole. Nonpeptide bonds alternating with a peptide bond structure were introduced into the backbone of the pseudo‐poly(amino acid)s. The cyclic dipeptide in this study was obtained from natural L ‐tyrosine. L ‐Tyrosine is a major nutrient amino acid with a phenolic hydroxyl group, so a polycarbonate derived from the cyclic dipeptide should possess more optimum mechanical properties, bioactivity, and biocompatibility. The hydrolytic specimen of the resulting polycarbonate was prepared by a modified solvent evaporation process. Under strongly alkaline conditions, degradation testing was performed. The tyrosine‐derived polycarbonate possessed a low glass‐transition temperature value and a high thermal decomposition temperature value, which formed a broad mean thermal processing range. The most important results of our study were the effects of the polycarbonate degradation on the local pH values, which were smaller than those of other biodegradable polymers [e.g., poly(lactic acid), poly(glycolic acid), and poly(lactic glycolic acid)]. The synthesized polymer and cyclic dipeptide were characterized with Fourier transform infrared, 13C‐NMR, and 1H‐NMR spectroscopy to determine their chemical structures; by differential scanning calorimetry and thermogravimetric analysis to determine the thermal properties of the polymer; by gel permeation chromatography to determine the polymer's molecular weight; and by X‐ray diffraction to determine the polymer's morphology. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Blended films of poly(L ‐lactide) [ie poly(L ‐lactic acid)] (PLLA) and poly(?‐caprolactone) (PCL) without or mixed with 10 wt% poly(L ‐lactide‐co‐?‐caprolactone) (PLLA‐CL) were prepared by solution‐casting. The effects of PLLA‐CL on the morphology, phase structure, crystallization, and mechanical properties of films have been investigated using polarization optical microscopy, scanning electron microscopy, differential scanning calorimetry and tensile testing. Addition of PLLA‐CL decreased number densities of spherulites in PLLA and PCL films, and improved the observability of spherulites and the smoothness of cross‐section of the PLLA/PCL blend film. The melting temperatures (Tm) of PLLA and PCL in the films remained unchanged upon addition of PLLA‐CL, while the crystallinities of PLLA and PCL increased at PLLA contents [XPLLA = weight of PLLA/(weight of PLLA and PCL)] of 0.4–0.7 and at most of the XPLLA values, respectively. The addition of PLLA‐CL improved the tensile strength and the Young modulus of the films at XPLLA of 0.5–0.8 and of 0–0.1 and 0.5–0.8, respectively, and the elongation at break of the films at all the XPLLA values. These findings strongly suggest that PLLA‐CL was miscible with PLLA and PCL, and that the dissolved PLLA‐CL in PLLA‐rich and PCL‐rich phases increased the compatibility between these two phases. © 2003 Society of Chemical Industry  相似文献   

13.
Syntheses and biodegradation of statistical copolymers of D ,L ‐lactide (D ,L ‐LA) with trimethylene carbonate (TMC), rac‐1‐methyltrimethylene carbonate (1‐MTMC) and 2,2‐dimethyltrimethylene carbonate (2,2‐DTMC) were investigated at various monomer ratios using SmMe(C5Me5)2THF as an initiator at 80 °C for 24 h in toluene. Biodegradations of poly(D ,L ‐LA‐co‐racemo‐1‐MTMC) (95/5) and poly(D ,L ‐LA‐co‐2,2‐DTMC) (98/2) with a compost at 60 °C proceed rapidly. Enzymatic degradations of these polymers were also performed using cholesterol esterase, lipoprotein lipase and proteinase K. Only poly(D ,L ‐LA‐co‐TMC) was biodegraded with cholesterol esterase, while poly(TMC), poly(1‐MTMC), poly(2,2‐DTMC) and poly(D ,L ‐LA) were barely degraded with these enzymes. Biodegradations of poly(D ,L ‐LA‐co‐TMC) (87/13) and poly(D ,L ‐LA‐co‐racemo‐1‐MTMC) (95/5) are rapid using proteinase K. Physical properties of these copolymers were also described. © 2003 Society of Chemical Industry  相似文献   

14.
Poly (DL ‐lactic acid‐co‐glycolic acid)‐co‐poly(ethylene glycol) was synthesized by bulk ring‐opening polymerization of DL ‐lactide/glycolide/poly(ethylene glycol) using stannous chloride as an initiator. The molecular structure of the copolymer was analyzed by IR, 1H NMR, and DSC. The degradation behavior of copolymer was assayed by the reduction of molecular weight, the loss‐in‐mass, and the changes of pH value for degradation medium. The different contents of PGA and PEG in the molecules of the copolymer could control the degradation rate of polymer. Human Serum Albumin (HSA) was chosen as the model hydrophilic drug and encapsulated in the copolymer. The HA‐loaded copolymer microspheres were characterized by the diameter, diameter distribution of the microspheres, and the loading efficiency. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3150–3156, 2003  相似文献   

15.
With D,L ‐lactic acid and Nϵ‐carbobenzoyloxy‐L ‐lysine [Lys(Z)] as the starting monomer material and tin dichloride as the catalyst, the drug carrier material poly(lactic acid‐coNϵ‐carbobenzoyloxy‐L ‐lysine) was synthesized via direct melt polycondensation. The copolymer was systematically characterized with intrinsic viscosity testing, Fourier transform infrared spectroscopy, 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and X‐ray diffraction. The influences of different feed molar ratios were examined. With increasing molar feed content of Lys(Z), the intrinsic viscosity, weight‐average molecular weight, and polydispersity index (weight‐average molecular weight/number‐average molecular weight) gradually decreased. Because of the introduction of Lys(Z) with a big aromatic ring into the copolymer, the glass‐transition temperature gradually increased with increasing feed charge of Lys(Z), and all of the copolymers were amorphous. The copolymers, with weight‐average molecular weights from 10,500 to 6900 Da, were obtained and could reach the molecular weight level of poly(lactic acid) modified by Lys(Z) via the ring‐opening polymerization of the cyclic intermediates, such as lactide and morpholine‐2,5‐dione. However, a few terminal carboxyl groups might have been deprotected during the polymerization reaction under high temperatures. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
An important strategy used in the polymer industry in recent years is blending two bio‐based polymers to attain desirable properties similar to traditional thermoplastics, thus increasing the application potential for bio‐based and bio‐degradable polymers. Miscibility of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) with poly(L ‐lactic acid) (PLA) were characterized using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Three different grades of commercially available PLAs and one type of PHBV were blended in different ratios of 50/50, 60/40, 70/30, and 80/20 (PHBV/PLA) using a micro‐compounder at 175°C. The DSC and TGA analysis showed the blends were immiscible due to different stereo configuration of PLA polymer and two distinct melting temperatures. However, some compatibility between PHBV and PLA polymers was observed due to decreases in PLA's glass transition temperatures. Additionally, the blends do not show clear separation by SEM analysis, as observed in the thermal analysis. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
A comparison of the thermal properties of two classes of poly(D,L ‐lactic‐glycolic acid) multiblock copolymers is reported. In particular, the results of differential scanning calorimetry, and thermogravimetric analysis of copolymers containing poly(ethylene glycol) (PEG) or diol‐terminated poly(ϵ‐caprolactone) (PCDT) segments are described. The influence of the chemical structure and the length of PEG and PCDT on thermal stability, degree of crystallinity and glass transition temperature (Tg ) is discussed. Finally, an evaluation of the hydrolytic behavior in conditions mimicking the physiological environment is reported. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1721–1728, 2000  相似文献   

18.
The fabrication of honeycomb‐patterned films from amphiphilic poly(L ‐lactide)‐block‐poly(ethylene glycol) (PLEG) in a high‐humidity atmosphere is reported. The influence of the solution concentration on pattern formation was investigated. Moreover, by comparing the different conditions of fabricating regular structures between PLEG and poly(phenylene oxide), the mechanism of the regular pattern formation was studied. Finally, by adding sodium dodecylsulfate to a concentrated solution of 1 g L?1 PLEG? CHCl3 which otherwise could not form regular pores, we found that regular pores could be obtained. The PLEG honeycomb films are expected to be of use in cell culture, tissue engineering and many other areas. Copyright © 2007 Society of Chemical Industry  相似文献   

19.
A two‐step direct copolymerization process of L ‐lactic acid (L ‐LA)/glycolic acid (GA) was developed. The first step was to produce an oligomer of L ‐LA/GA and then the oligomer was polymerized with binary catalyst tin chloride dihydrate/p‐toluenesulfonic acid. In this way, the copoly(L ‐LA/GA) (PLGA), without any organic solvent, was synthesized directly. The thermal properties and solubility in chloroform of PLGA were studied by DSC and NMR. The results showed that the melting point of PLGA decreases with increasing mole fraction of GA units in copolymer. In addition, the melting point of polymer also decreased with increasing degree of racemization of polymer. The solubility of PLGA in chloroform decreased with the increase of the average lengths of the glycolic acid units. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2163–2168, 2004  相似文献   

20.
In this work, porous structures of poly(l ‐lactic acid)‐co‐(tri‐methylene‐carbonate) (PLLA‐co‐TMC) were successfully fabricated using two experimental methods, that is, using supercritical CO2 as antisolvent and as foaming agent through the pressure induced phase separation technique. Considering the phase inversion method, the effect of the initial polymer concentration of the solution, pressure, and temperature on the morphology of the final porous structure (pore size, porosity, and cell density) was investigated. The L–L demixing process was suggested as the dominant mechanism for the phase separation and pore production. The temperature window, for which PLLA‐co‐TMC porous structures are successfully produced using the pressure induced phase separation technique, was determined at 150 and 210 bar. The effect of temperature on the final porous structure was investigated. POLYM. ENG. SCI., 57:1005–1015, 2017. © 2016 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号