首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seven halogen‐free flame retardant (FR) compounds were evaluated using pyrolysis combustion flow calorimetry (PCFC) and cone calorimetry. Performance of wires coated with the compounds was evaluated using industry standard flame tests. The results suggest that time to peak heat release rate (PHRR) and total heat released (THR) in cone calorimetry (and THR and temperature at PHRR in PCFC) be given more attention in FR compound evaluation. Results were analyzed using flame spread theory. As predicted, the lateral flame spread velocity was independent of PHRR and heat release capacity. However, no angular dependence of flame spread velocity was observed. Thus, the thermal theory of ignition and flame spread, which assumes that ignition at the flame front occurs at a particular flame and ignition temperature, provides little insight into the performance of the compounds. However, results are consistent with a heat release rate greater than about 66kW/m2 during flame propagation for sustained ignition of insulated wires containing mineral fillers, in agreement with a critical heat release rate criterion for burning. Mineral fillers can reduce heat release rate below the threshold value by lowering the flaming combustion efficiency and fuel content. A rapid screening procedure using PCFC is suggested by logistic regression of the binary (burn/no‐burn) results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The structure and dynamics of a natural buoyant turbulent diffusion flame near a vertical surface with combustible gas exhaustion are numerically studied by using the FDS model and computer code. The flame is considered near the surface through which gaseous propylene is injected with a prescribed flow rate. Requirements are determined for the grid cell size in the near-wall region, which ensure sufficient spatial resolution of the boundary layer structure. It is shown that the predicted value of the total heat flux at the surface agrees with the measured results. Investigations of ignition and combustion of a vertical plate of non-charring thermoplastic (polymethylmetacrylate) with allowance for the material pyrolysis reaction show that the ignitor parameters determine the duration of the transient period, but weakly affect the growth of the heat release rate and the height of the pyrolysis region at the stage of developed burning. Significant effects of the ignitor shape, size, and temperature, as well as lateral entrainment of air on the velocity of the upward flame spread rate over the plate surface and on the shape of the pyrolysis front are revealed. The existence of critical parameters of the ignitor separating flame decay from developed burning is demonstrated. Three flame spread regimes with different pyrolysis front shapes are identified.  相似文献   

3.
D. Bryant 《火与材料》1995,19(3):119-126
Two experiments were performed on board an aircraft flying repeated parabolic trajectories to generate free-fal conditions. The first experiment investigates the way in which rate of heat release (RHR) varies with gravity for a candle flame under an imposed low-speed flow. In line with previous studies of flame spread rate it has been shown that rate of heat release drops significantly in imcrogravity. The heat loss due to radiation decreases by a larger proportion than that due to non-radiative processes indicating a lower flame temperature. The RHR from a microgravity flame is flow rate dependent, increasing for increased flow rate at air speeds under 0.03 ms?1. For the geometry used in this experiment hypergravity caused only a small increase in RHR. The second experiment studied the ignitability of thermoplastics under an imposed radiant heat flux. The ignition test apparatus consists of a conical spiral heating element positioned horizontally above the sample, a continuous spark ignition source and a removable heat shield. Experiments were conducted in a sealed pressure chamber on samples of either PMMA or POM, 1.5 mm thick, with a ceramic backing. There is some indication that gravity influences the time to ignition for some materials.  相似文献   

4.
Fire safety is dependent on reliable information on material properties, particularly relating to burning behaviour. The Underwriters Laboratory UL‐94 test is a widely used simple Bunsen burner test for vertically upward flame spread. Aryl polyetheretherketones (PEEK) are polymers of exceptional thermal stability, typically decomposing at around 600°C and forming 50% carbonaceous char residue. Tests on seven PEEK polymers, and two related materials, in independent laboratories have revealed large inconsistencies in both the final broad classification and the scatter within each set of test results. In many cases, this variance is so large that if samples from the same batch of many of the materials were repeatedly submitted to test laboratories, this would ultimately result in one set remaining below the maximum burn time criteria, and so meeting the least flammable V‐0 rating. Initial data are presented indicating that a larger ignition source actually results in shorter burning times and more consistent burning behaviour. The reported behaviour of PEEK indicates that the inconsistencies reported here are not a function of inconsistencies in the material itself but rather a consequence of the low applied heat flux of the test method being very close to the critical heat flux for ignition of the PEEK polymer, which is rather high. With higher applied heat fluxes, this generates sufficient heat for a protective char to form, creating an effective barrier to further flame spread. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Ning Tian  Aixi Zhou 《火与材料》2015,39(2):139-152
Surface ignition temperature has been widely used as an ignition criterion for the piloted ignition of common combustible solids. However, experimental observations have shown that the surface temperature of a solid at ignition varies with external heat flux. In addition, if the external heat flux is smaller than the critical heat flux for ignition, the solid will not ignite while the actual surface temperature may be higher than the defined surface ignition temperature. To overcome these limitations and maintain the simplicity of the surface ignition temperature criterion, a new ignition criterion integrating heating rate and surface temperature is proposed, developed, and validated. Predictions based on the new criterion compare well with experimental results on piloted ignition of a thermoplastic material (black PMMA), a thermoset composite material (E‐glass fiber reinforced polyester composite) and a cellulosic material (Red Oak) subjected to different heat flux levels. Potential factors affecting the accuracy and predictive capability of the new heating rate‐related ignition temperature criterion are discussed. The method and associated procedures to construct the heating rate‐related temperature ignition criterion can be used to obtain the same ignition criterion for other combustible solids. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents an experimental and numerical investigation of the effects of intumescent coating and nanoparticles on the burning behaviors of flaxboard. Virgin flaxboard samples and those coated with intumescent coatings (with/without nanoparticles) were tested in the cone calorimeter and single burning item (SBI) test. Experimental results show a significant increase in the time to ignition and also a reduction in the heat release rate by the intumescent coatings. In order to explain quantitatively and predict the effects of the intumescent coating, a global fractional factor (the ratio of the heat flux at the interface of the intumescent surface and the char layer of flaxboard to the surface heat flux when there is no intumescent coating layer) was introduced based on analytical solutions for charring materials. The fractional factor for the intumescent coatings was found by comparing predictions to the experimental data in the cone calorimeter test and, subsequently, was incorporated in an upward flame spread model, along with the ignition and thermal properties deduced from the ignition tests, to predict the burning rates in the SBI tests. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Yong Wang  Jun Zhang 《火与材料》2012,36(3):231-240
Small‐scale fire tests including the Underwriters Laboratories 94 (UL94) vertical burning test and the cone calorimeter test are widely used. In this paper, the ignition times of materials heated by the conical heater of a cone calorimeter and the UL94 flame were measured. It was found that for polymer bars heated by the UL94 flame, the ignition time is relatively short and increases with the specimen thickness. But the contribution of the specimen thickness to the delay of the ignition time is limited. The intrinsic properties of materials play a more important role in the ignition time than the specimen thickness. In addition, respectively corresponding to one‐dimensional, two‐dimensional, and three‐dimensional heat transfer, three heating modes of the UL94 flame were presented and compared with the conical heater. It was found that whether the heat source is the conical heater or the UL94 flame, the ignition time depends on the heat flux and the multidimensional heat transfer. The ignition time decreases with the increasing heat flux, and the magnitude order of the ignition time might drop when the heating mode changes from one‐dimensional to multidimensional heat transfer. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Flame spread experiments were conducted in an ASTM E 1321 lateral ignition and flame transport (LIFT) apparatus and a reduced scale ignition and flame spread test (RIFT) adaptation of the cone calorimeter. Wood‐based products were tested and a flame spread model was applied to the results to obtain the flame spread parameter and the minimum heat flux required for flame spread. The materials used were plywood, medium density fibreboard, hardboard, two‐particle board products, Melamine (Melteca) covered products with two types of wood substrate along with New Zealand grown Rimu, Beech, Macrocarpa and Radiata Pine. The RIFT gave comparable results to the LIFT for several of the materials investigated. There appeared to be an effective limit on suitable materials that can be successfully tested in the RIFT to those that have a minimum flux for flame spread of less than 7kW/m2. This limitation was due to the rapid decay of the heat flux profile along the sample and the lower resolution dictated by the smaller size of the RIFT apparatus. It was found that the limit on the minimum heat flux for flame spread was approximately equivalent to a minimum ignition flux of 18kW/m2. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A Controlled-atomosphere cone calorimeter was used to investigate the burning of pure and flame retardant-treated cotton fabrics. The condensed-phase flame retardants used were Morguard (containing ammonium dihydrogen phosphate and diammonium hydrogen phoisphate) and Nochar (containing ammonium sulfate and a sodium salt). The fabrics were tested at 25 kW m?2 incident heat flux in environments containing 15–30% oxygen. The flame retardants increased the time to ignition, residue yield, and CO and CO2 yields. The flame retardants decreased the peak and average mass loss rates, the peak and average heat release rates, the effective heat of combustion at peak heat release rate, and the propensity to flashover. The effect of oxygen concentration on the burning of pure and flame retardant-treated cotton fabrics has also been investigated. The flame retardants had better performance when the treated fabrics burned in the lower oxyge concentrations. The result of this study indicate that the controlled-atmosphere cone calorimeter is a good tool for studying the effect of flame retardant and oxygen concentration on the burning of materials.  相似文献   

10.
Ziqing Yu  Aixi Zhou 《火与材料》2014,38(1):100-110
This study evaluates the effect of flame heat flux on the prediction of thermal response and fire properties of a char‐forming composite material. A simplified two‐layer flame model was developed and incorporated into a heat transfer thermal model to predict the thermal response and fire reaction characteristics of a burning material. A typical char‐forming material, E‐glass reinforced polyester composite, was used in the study. A cone calorimeter was used to measure the fire reaction characteristics of the composite. The flame heat flux in a cone calorimeter test setup was estimated using the simplified flame model. Thermal response and fire property predictions with and without the effect of flame heat flux were compared with experimental data obtained from the cone calorimeter tests. Results showed that the average flame heat flux of the composite in a cone calorimeter was 19.1 ± 6 kW/m² from model predictions. The flame had a significant effect on the thermal response and fire properties of the composite around the first heat release peak but the effect decreased rapidly afterwards. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A physical explanation for the existence of the threshold of erosive burning is proposed. It is shown that this type of combustion occurs when the thickness of the laminar sublayer in the turbulent boundary layer becomes smaller than the thickness of the laminar combustion zone. In this case, turbulent flame in the gas phase is formed. Relations are obtained linking the critical (threshold) velocity of the blowing flow and the critical Vilyunov number to the properties of the propellant and the gas resulting from propellant decomposition. Simple exponential dependences on the blowing velocity are found for the burning rate. The simplest representation of the erosive burning rate is obtained using the Bulgakov-Lipanov number, whose threshold value is equal to unity. A new mechanism for the occurrence of negative erosion is proposed, according to which the burning rate decreases during blowing because the boundary layer is displaced, resulting in a decrease in the heat flux from the flame zone to the solid-phase decomposition surface. __________ Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 3, pp. 61–71, May–June, 2008.  相似文献   

12.
Thermally conductive polymers offer new possibilities for the heat dissipation in electric and electronic components, for example, by a three‐dimensional shaping of the heat sinks. To face safety regulations, improved fire performance of those components is required. In contrast to unfilled polymers, those materials exhibit an entirely different thermal behavior. To investigate the flammability, a phosphorus flame retardant was incorporated into thermally conductive composites of polyamide 6 and hexagonal boron nitride. The flame retardant decreased the thermal conductivity only slightly. However, the burning behavior changed significantly, due to a different heat propagation, which was investigated using a thermographic camera. An optimum content of hexagonal boron nitride for a sufficient thermal conductivity and fire performance was found between 20 and 30 vol%. The improvement of the fire performance was due to a faster heat release out of the pyrolysis zone and an earlier decomposition of the flame retardant. For higher contents of hexagonal boron nitride, the heat was spread faster within the part, promoting an earlier ignition and increasing the decomposition rate of the flame retardant.  相似文献   

13.
Flame‐retardant properties of nylon 6/organically modified montmorillonite (OMMT) thin films, fibers, and fabrics were investigated to determine the efficacy of condensed‐phase flame‐retardant mechanism in relation to montmorillonite concentration, sample geometry, and flame test conditions. Horizontal flame spread conducted on thin films revealed no significant difference in burning behavior between nylon 6 and nanocomposites with 5 wt% OMMT. However, with a higher concentration level of 8–10 wt% OMMT, the films burned without any dripping. The flame spread rate was reduced by 30–40% as compared with nylon 6 films. Cone calorimeter study on nanocomposite films showed that the peak heat release rate of nylon 6 was reduced by 65–67% with 8–10 wt% OMMT. Undrawn nanocomposite monofilaments with 10 wt% OMMT burned slowly and steadily in Bunsen flame without dripping. In cone calorimeter, nanocomposite fabrics with 8 wt% OMMT showed reduced heat release rate and mass loss rate compared to nylon 6 fabrics with increase in fabric tightness factor. The mass loss rate was about 40–60% less when compared with nylon 6 fabrics. The fabric char structure remained intact after burning. This demonstrated the interdependence of fabric tightness factor, OMMT concentration, and source of heat flux in forming a protective char and affecting the flammability of fabrics. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

14.
This paper documents the first of the two interrelated studies that were conducted to more fundamentally understand the scalability of flame heat flux, the motivation being that it has been reported that flame heat flux back to the burning surface in bench‐scale experiments is not the same as for large‐scale fires. The key aspect was the use of real scale applied heat flux up to 200kW/m2 which is well beyond that typically considered in contemporary testing. The main conclusions are that decomposition kinetics needs to be included in the study of ignition and the energy balance for steady burning is too simplistic to represent the physics occurring. An unexpected non‐linear trend is observed in the typical plotting methods currently used in fire protection engineering for ignition and mass loss flux data for several materials tested and this non‐linearity is a true material response. Using measured temperature profiles in the condensed phase shows that viewing ignition as an inert material process is inaccurate at predicting the surface temperature at higher heat fluxes. The steady burning temperature profiles appear to be invariant with applied heat flux. This possible inaccuracy was investigated by obtaining the heat of gasification via the ‘typical technique’ using the mass loss flux data and comparing it to the commonly considered ‘fundamental’ value obtained from differential scanning calorimetry measurements. This comparison suggests that the ‘typical technique’ energy balance is too simplified to represent the physics occurring for any range of applied heat flux. Observed bubbling and melting phenomena provide a possible direction of study. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
This paper examines the standards for fire safety in transport systems and in particular the test method for the flammability of materials within passenger compartments of motor vehicles. The paper compares data from ignition tests conducted in the cone calorimeter and the FIST apparatus with tests conducted using the FMVSS 302 horizontal flame spread apparatus. Ten materials were selected as representative of those used as seat coverings of private and commercial passenger vehicles. The time to ignition of new and used materials subject to exposure heat fluxes between 20 kW/m2 and 40 kW/m2 was measured. The results from the ignition tests were analysed using thermally thick and thermally thin theoretical models. The critical heat flux for sustained piloted ignition was determined from the time to ignition data using the thermally thin approach. Derived ignition temperatures from both the thermally thick and thermally thin methods were compared with measurements using a thermocouple attached to the back surface of materials in selected tests. The flame spread rates in the FMVSS 302 apparatus were determined and a comparison was made between the performance of the materials in the flame spread apparatus, the cone calorimeter and the FIST. The results suggests that a critical heat flux criterion could be used to provide an equivalent pass/fail performance requirement to that specified by the horizontal flame spread test although further testing is needed to support this. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
The ignition and combustion of dust-gas suspensions are considered. It is shown that the ability of these systems to accumulate heat is determined not only by their kinetic and thermal properties but also by the relation between their reaction surface and the heat-removal surface (f). Experimental information on flame temperatures, ignition delays, and flame propagation over gas suspensions is processed using the parameter f, and the postulate on the stimulating role of the developed reaction surface in activating these processes is validated. It is shown that during overall burning, diffusion combustion of particles occurs only for rather small values of f. The ambiguous effect of the parameter f on the ignition and combustion processes leads to the necessity of optimizing the fuel size distribution and concentration for the effective operation of the power devices. The role of the macroparameters of two-phase flames of refractory metals in the synthesis of combustion nanoproducts is analyzed. __________ Translated from Fizika Goreniya i Vzryva, Vol. 41, No. 6, pp. 3–14, November–December, 2005.  相似文献   

17.
The development of methods to predict full‐scale fire behaviour using small‐scale test data is of great interest to the fire community. This study evaluated the ability of one model, originally developed during the European Combustion Behaviour of Upholstered Furniture (CBUF) project, to predict heat release rates. Polyurethane foam specimens were tested in the furniture calorimeter using both centre and edge ignition locations. Input data were obtained using cone calorimeter tests and infrared video‐based flame area measurements. Two particular issues were investigated: how variations in incident heat flux in cone calorimeter tests impact heat release rate predictions, and the ability of the model to predict results for different foam thicknesses. Heat release rate predictions showed good agreement with experimental results, particularly during the growth phase of the fire. The model was more successful in predicting results for edge ignition tests than for centre ignition tests and in predicting results for thinner foams. Results indicated that because of sensitivity of the burning behaviour to foam specimen geometry and ignition location, a single incident heat flux could not be specified for generating input for the CBUF model. Potential methods to determine appropriate cone calorimeter input for various geometries and ignition locations are discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A series of novel aluminum phosphate ester (APEA) flame retardants were synthesized by the salification of cyclic phosphate ester acid (PEA) with different mass ratios of aluminum hydroxide (ATH) and thoroughly characterized by Fourier transform infrared (FTIR) spectroscopy and 1H nuclear magnetic resonance spectroscopy. The PEA and APEAs were thoroughly mixed with melamine formaldehyde resin to produce five kinds of transparent fire-retardant coatings. The synergistic effects of ATH on the thermal stability, flame retardancy, and smoke suppression properties of the coatings were investigated by different analytical instruments. The results show that the incorporation of ATH greatly decreases the weight loss, char index, flame spread rating, heat release rate, total heat release, smoke production rate, total smoke release and specific optical density in the coatings applied to plywood boards, which is ascribed to a more compact and intumescent char formed during burning, as determined from digital photographs and scanning electron microscopy images. The synergistic effects of ATH in the coatings depend on the content of ATH, and an excessive amount of ATH diminishes the synergistic effects on the flame retardancy and smoke suppression properties based on fire protection tests and cone calorimeter test. Thermo-gravimetric analysis reveals that the thermal stability and char-forming ability of the coatings gradually improve with increasing loading of ATH. FTIR analysis demonstrates that the incorporation of ATH forms a more phosphorus-rich crosslinked char and aromatic char during burning, thus effectively reducing the mass loss, heat release, and smoke production and exhibiting excellent synergistic flame retardant and smoke suppression effects in the coatings.  相似文献   

19.
This study aims to develop a complete methodology for assessing flammability hazards of typical fuels (ie, transformer oil, hydraulic oil, gear oil, and lubricating grease) used in a wind turbine nacelle by combining different experimental techniques such as thermogravimetric analysis and cone calorimetry. Pyrolysis properties (onset temperature, temperature of maximum mass loss rate, and mass residue) and reaction‐to‐fire properties (ignition time, heat release rate, mass loss rate, and smoke release rate) were determined and used for a preliminary assessment of thermal stability and flammability hazards. Additional indices, for ignition and thermal behavior (effective heat of combustion, average smoke yield, and smoke point height, heat release capacity, fire hazard parameter, and smoke parameter, were calculated to provide a more advanced assessment of the hazards in a wind turbine. Results show that pyrolysis of transformer oil, lubricating grease, hydraulic oil, and gear oil occur in the range of 150°C to 550°C. Lubricating grease and transformer oil show the higher and lower thermal stabilities with maximum pyrolysis rate temperatures of 471°C and 282°C, respectively. The measured relation between ignition time and radiant heat flux agrees well with Janssens method (a power of 0.55). The aforementioned indices appear to provide a reasonable prediction of performance under real fire conditions according to a full‐scale fire test documented by Declercq and Van Schevensteen. The results of the study indicate that transformer oil is the easiest to ignite while lubricating grease is the most difficult to ignite but also has the highest smoke production rate; that transformer oil has the highest heat release rate while gear oil has the lowest; and that the fire hazard parameter is the highest for transformer oil and the smoke parameter is the highest for lubricating grease. The potential of this type of work to design safer wind turbines under performance‐based approaches is clearly clarified.  相似文献   

20.
Effect of addition of carbon in the form of graphite and carbolac on the combustion characteristics of Magnesium-Sodium nitrate propellant has been studied. Results indicated that the burning rate of the propellant increased significantly by the addition of graphite upto 2%. Thermal decomposition studies revealed that the graphite particles in addition to its absorption of thermal energy being an inert material react with the decomposed products of the sodium nitrate just above the burning surface of the propellant for the exothermic heat release. This heat release which is high at low concentration of graphite is seen causing high burning rate. Any further increase in graphite concentration beyound 2% reduces the burning rate as the thermal energy absorption exceeds the heat release at the burning surface. When carbon in the form of carbolac was used in the composition reactive species diffuse out prior to the sample ignition without participating in the combustion thus reduces the burning rate. The heat of reaction data supported the suggested mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号