首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ternary nanocomposites based on poly(butylene terephthalate) (PBT), maleic anhydride grafted poly(ethylene‐co‐vinyl acetate) (EVA‐g‐MAH), and organically modified montmorllonite (organoclays) were prepared through four different blending sequences in a Haake rheocord mixer: (1) To blend PBT, EVA‐g‐MAH and organoclays in one step; (2) First to prepare EVA‐g‐MAH/organoclay nanocomposite, then mix it with PBT to get the final nanocomposite; (3) To mix PBT with organoclays first, then the PBT/organoclay nanocomposite with EVA‐g‐MAH. (4) To mix organoclays with the PBT/EVA‐g‐MAH blend. The microstructure of the PBT/EVA‐g‐MAH/organoclay ternary hybrids was characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). It was found that the blending sequence significantly influences the microstructure of PBT/EVA‐g‐MAH/organoclay ternary hybrids and the dispersion behavior of the organoclays in the polymer matrix. Tensile and impact properties of the hybrids were also studied. The results showed that the mixing sequence (2) gives the best tensile and impact strength due to its fine “sea‐island” morphology of PBT/EVA‐g‐MAH blend and good dispersion of the organoclays in the continuous PBT matrix.  相似文献   

2.
Organoclay filled natural rubber (NR) nanocomposites were prepared using a laboratory two-roll mill. The effect of organoclay loading up to 10 phr was studied. The vulcanized nanocomposites were subjected to mechanical, thermal, and swelling tests. The results indicated that the tensile strength and elongation at break reached optimum at 4 phr of organoclay loading, and the incorporation of organoclay increased the tensile modulus and hardness of NR nanocomposites. The thermal degradation was shifted to a higher temperature and the weight loss decreased with incorporation of organoclay. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were employed to characterize the microstructure of NR nanocomposites. Results from TEM and XRD show the formation of intercalated and exfoliated individual silicate layers of organoclay filled NR nanocomposites particularly at low filler loading (< 4 phr).  相似文献   

3.
Ethylene vinyl acetate (EVA‐45)/ethylene propylene diene terpolymer (EPDM) blend‐layered double hydroxide (LDH) nanocomposites have been prepared by solution blending of 1:1 weight ratio of EVA and EPDM with varying amounts of organo LDH (DS‐LDH). X‐ray diffraction and transmission electron microscopy analysis suggest the formation of partially exfoliated EVA/EPDM/DS‐LDH nanocomposites. Measurement of mechanical properties of the nanocomposites (3 wt% DS‐LDH content) show that the improvement in tensile strength and elongation at break are 35 and 12% higher than neat EVA/EPDM blends. Dynamic mechanical thermal analysis also shows that the storage modulus of the nanocomposites at glass transition temperature is higher compared to the pure blend. Such improvements in mechanical properties have been correlated in terms of fracture behavior of the nanocomposites using scanning electron microscopy analysis. Thermal stability of the prepared nanocomposites is substantially higher compared to neat EVA/EPDM blend, confirming the formation of high‐performance polymer nanocomposites. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

4.
Poly[ethylene‐co‐(vinyl acetate)] (EVA)/(Standard Malaysian natural rubber) (SMR L)/organoclay nanocomposites were prepared by using melt intercalation and solution blending methods. In both preparation methods, the EVA: (SMR L) ratio was prefixed at 50:50, while the organoclay loading was varied from 0 to 10 phr. The effects of two different processing routes and organoclay loading on the morphology, tensile, properties thermal properties, and flammability of the nanocomposites were studied. X‐ray diffraction results and transmission electron microscopy images proved that solution blending promotes better dispersion of organoclay than melt intercalation. Thus, the nanocomposites prepared by the solution‐blending method exhibited higher values of tensile strength, stress at 100% elongation (M100), and thermal stability. The M100 value and thermal stability improved proportionally with the increase of organoclay content, owing to the demobilizing effect and the barrier properties of the organoclay. The optimum tensile strength value was achieved at a 2‐phr organoclay loading. Further increases in loading decreased the strength of the nanocomposites. Tensile fracture surfaces of the nanocomposites prepared by both methods showed different fracture behavior, as evidenced by scanning electron microscopy images. Flammability decreased when the organoclay loading increased for the nanocomposites prepared by both methods. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

5.
Rubber‐toughened polypropylene (PP) nanocomposites containing organophilic layered silicates were prepared by means of melt extrusion at 230 °C using a co‐rotating twin‐screw extruder in order to examine the influence of the organoclay and the addition of PP grafted with maleic anhydride (PPgMAH) as a compatibilizer on the morphological, mechanical and thermal properties. The mechanical properties of rubber‐toughened polypropylene nanocomposites (RTPPNCs) were studied through tensile, flexural and impact tests. Scanning electron microscopy (SEM) was used for investigation of the phase morphology and rubber particles size. X‐ray diffraction (XRD) was employed to characterize the formation of nanocomposites. The thermal properties were investigated by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dynamic mechanical properties were examined by using dynamic mechanical analysis (DMA). From the tensile and flexural tests, the optimum loading of organoclay in RTPP was found to be 6 wt%. The optimum loading of PPgMAH, based on the tensile and flexural properties, was also 6 wt%. The increase in the organoclay and PPgMAH content resulted in a severe embrittlement, manifested by a drop in the impact strength and tensile elongation at break. XRD studies revealed that intercalated RTPPNCs had been successfully prepared where the macromolecular PP segments were intercalated into the interlayer space of the organoclay. In addition, the organoclay was dispersed more evenly in the RTPPNC as the PPgMAH content increased. TGA results revealed that the thermal stability of the RTPPNC improved significantly with the addition of a small amount of organoclay. Copyright © 2006 Society of Chemical Industry  相似文献   

6.
Ethylene‐(vinyl acetate) copolymer (EVA)/rectorite nanocomposites were prepared by direct melt extrusion of EVA and organo‐rectorite. The microstructures and thermal properties of EVA nanocomposites were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), solid‐state nuclear magnetic spectroscopy, positron annihilation spectroscopy, thermal gravimetric analysis (TGA) and dynamic mechanical analysis techniques. XRD pattern and SEM images show that the intercalated structure is formed and rectorite is finely dispersed in EVA matrix. When organoclay content of the hybrid increases to 7.5 wt%, or pristine rectorite was used instead of organoclay, the crystallization behavior of EVA nanocomposite changes greatly and the ratio of the monoclinic to orthorhombic crystal increases significantly. The relative fractional free volume of the nanocomposite decreases with the increasing organo‐rectorite content, and the values of damping factor (tan δ) for all nanocomposites are lower than that of pure EVA. These facts illuminate that intercalated structure restricts the segment motion and mobilization of polymer chain. TGA results of EVA nanocomposites in air indicate that deacylation of EVA is accelerated because of the catalytic effect and the thermal degradation of the main chain is delayed owing to the barrier effect of silicate layers. Copyright © 2005 Society of Chemical Industry  相似文献   

7.
《Polymer Composites》2017,38(2):396-403
A cationic gemini surfactant (N‐isopropyl‐N , N‐dimethyldodecan 1‐aminium bromide) was synthesized by quaternization reaction. The synthesized surfactant was characterized by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopy. Modified Na–bentonite (organoclay) was obtained by the intercalation of a gemini surfactant between the layers of sodium bentonite and characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), FTIR, thermogravimetry–differential thermal analysis (TGA–DTA) and differential scanning calorimetry (DSC) techniques. The results of XRD, TEM, FTIR, TGA, and corresponding DSC analysis indicate that gemini surfactant has been successfully intercalated into the clay layers. Rubber‐based nanocomposites have been prepared by incorporating various concentration of organically modified bentonite on to natural rubber/styrene–butadiene rubber (NR/SBR) rubber blend (75/25) using two roll mill. Effect of organoclay content on XRD, curing, mechanical, and scanning electron microscopy (SEM) properties of the nanocomposites are investigated. The morphological study showed the intercalation of nanoclay in NR/SBR blend chain. It was found that the organoclay decrease the optimum and scorch time of the curing reaction, increase maximum torque and the curing rate, which was attributed to the further intercalation during vulcanization process. Mechanical properties such as tensile strength, modulus and elongation at break have improved. POLYM. COMPOS., 38:396–403, 2017. © 2015 Society of Plastics Engineers  相似文献   

8.
Skim natural rubber latex (SNRL) is a protein rich by‐product obtained during the centrifugal concentration of natural rubber (NR) latex. A new method to recover rubber hydrocarbon and to obtain nanocomposites with organoclay (OC) was investigated. The approach involved treatment of SNRL with alkali and surfactant, leading to creaming of skim latex and removal of clear aqueous phase before addition of OC dispersion. Clay mixed latex was then coagulated to a consolidated mass by formic acid, followed by drying and vulcanization like a conventional rubber vulcanizate. X‐ray diffraction (XRD) studies revealed that NR nanocomposites exhibited a highly intercalated structure up to a loading of 15 phr (parts per hundred rubber) of OC. Transmission electron microscopy studies showed a highly exfoliated and intercalated structure for the NR nanocomposites at loadings of 3–5 phr organically modified montmorillonite (OMMT). The presence of clay resulted in a faster onset of cure and higher rheometric torque. The rubber recovered from skim latex had a high gum strength, and a low amount of OC (5 phr) improved the modulus and tensile strength of NR. The high tensile strength was supported by the tensile fractography from scanning electron microscopy. Thermal ageing at 70°C for 6 days resulted in an improvement in the modulus of the samples; the effect was greater for unfilled NR vulcanizate. The maximum degradation temperature was found to be independent of the presence and concentration of OC. The increased restriction to swelling with the loading of OC suggested a higher level of crosslinking and reinforcement in its presence. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3277–3285, 2006  相似文献   

9.
Attempts were made to trace the effect of organoclay (OC) on the rheological and mechanical behaviors of the low density polyethylene (LDPE)/ethylene‐vinyl acetate (EVA) blends. To do this effectively, in addition to LDPE/EVA/OC system, pure LDPE and LDPE/EVA blends were also examined as model systems. The rheological behavior was determined by the capillary rheometer. Morphological characterization was also carried out using X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and theoretical approach based on interfacial energies. Shear viscosity, tensile strength and elastic modulus of LDPE/EVA were found to decrease by increasing the EVA content, while for LDPE/EVA/OC ternary nanocomposites, such properties showed an increase by increasing the content of EVA. Such behavior was explained by the morphological characteristic of the system in which OC was mainly intercalated/exfoliated in the EVA phase. This morphological characteristic was corroborated by the XRD, TEM and interfacial energies data. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers  相似文献   

10.
Polymer blend nanocomposites have been developed by solution method using ethylene propylene diene terpolymer (EPDM), ethylene vinyl acetate (EVA‐45) copolymer, and organically modified layered silicate. Morphological investigation made by wide‐angle X‐ray diffraction and transmission electron microscopic analysis indicates intercalated structure of EPDM/EVA nanocomposites with partial disorder. Scanning electron microscopic studies exhibit the phase behavior of EPDM/EVA blend nanocomposites. Dynamic mechanical thermal analysis shows a significant increase in storage modulus in the rubbery plateau. The decrease in damping (tan δ) value and enhanced glass‐transition temperature (Tg) demonstrate the reinforcing effect of layered silicate in the EPDM/EVA blend matrix. The tensile modulus of these nanocomposites also showed a significant improvement with the filler content. The main chain scission of EPDM/EVA blend nanocomposites compared with the neat EPDM/EVA blend showed substantial improvement in thermal stability in nitrogen, whereas a sizeable increase is observed in air. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

11.
Novel biodegradable poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3HB‐co‐4HB)]/organoclay nanocomposites were prepared via solution casting. Exfoliated nanocomposite structure was confirmed by wide‐angle X‐ray diffraction (WAXD) and transmission electron microscopy (TEM) for the nanocomposites with low organoclay loadings (≤3 wt%), whereas the mixtures of exfoliated and unexfoliated organoclays were appeared in the nanocomposite with an organoclay content of 5 wt%. The organoclay fillers accelerated significantly the cold crystallization process of P(3HB‐co‐4HB) matrix. The thermal stability of the nanocomposites was in general better than that of pristine P(3HB‐co‐4HB). Considerable increase in tensile modulus was observed for the nanocomposites, especially at an organoclay content of 3 wt%. These results demonstrated that the nanocomposites improved the material properties of P(3HB‐co‐4HB). POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

12.
Ethylene vinyl acetate (EVA)/natural rubber (SMR L)/organoclay thermoplastic elastomer nanocomposites were melt compounded in an internal mixer, Haake Rheometer, at 120°C and 50 rpm rotor speed. In this paper, we demonstrate the effect of different blending sequences and organoclay loading from 2 to 10 phr (parts per hundred resins) on the tensile properties, morphology, thermal degradation, flammability, and water absorption behavior of EVA/SMR L/organoclay nanocomposites. EVA/SMR L/organoclay TPE nanocomposites were prepared by three different blending sequences, and each exhibited different tensile properties. Results indicated that the presence of organoclay increases the tensile properties, resistance toward thermal degradation, resistance to water permeation, and flame retardancy for all the nanocomposites prepared via different blending sequences. However, the optimum results for all the properties studied were achieved when EVA was blended with organoclay first and SMR L was incorporated later into the blend. The optimum organoclay loading was achieved at 2 phr. Results from scanning electron microscopy (SEM) and X-ray diffraction (XRD) studies showed that at 2 phr organoclay loading, nanostructures of individual silicate layers were achieved, whereas at 8 phr organoclay loading, agglomeration was observed. Flammability of the nanocomposites decreased when the organoclay loading increased.  相似文献   

13.
Partially exfoliated ethylene vinyl acetate (EVA‐40, 40% vinyl acetate content)/layered double hydroxide (LDH) nanocomposites using organically modified layered double hydroxide (DS‐LDH) have been synthesized by solution intercalation method. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) studies of nanocomposites shows the formation of exfoliated LDH nanolayers in EVA‐40 matrix at lower DS‐LDH contents and partially intercalated/exfoliated EVA‐40/MgAl LDH nanocomposites at higher DS‐LDH contents. These EVA‐40/MgAl LDH nanocomposites demonstrate a significant improvement in tensile strength and elongation at break for 3 wt% of DS‐LDH filler loading compare to neat EVA‐40 matrix. Thermogravimetric analysis also shows that the thermal stability of the nanocomposites increases with DS‐LDH content in EVA‐40. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

14.
Nanocomposite foams were fabricated from 60/40 wt% ethylene vinyl acetate (EVA)/natural rubber (NR) blends by using azodicarbonamide as a blowing agent. Two different nanofillers (sodium montmorillonite and organoclay) were employed to study their effects on foam properties. The results were also compared with conventional (china clay)‐filled foams. Transmission electron microscopy, X‐ray diffraction, scanning electron microscopy, and three‐dimensional Microfocus X‐ray computed tomography scanning analysis were performed to characterize the EVA/NR blend morphology and foam structures. The results revealed that the nanofiller acted as a blend compatibilizer. Sodium montmorillonite was more effective in compatibilization, generating better phase‐separated EVA/NR blend morphology and improving foam structure. Higher filler loading increased the specific tensile strength of rubber foams. The rubber nanocomposite foam showed superior specific tensile strength to the conventional rubber composite foam. The elastic recovery and compressive strength of the nanocomposite foams decreased with increasing filler content, whereas the opposite trend was observed for the conventional composite foams with china clay. The thermal conductivity measurement indicated that the nanofiller had better beneficial effect on thermal insulation over china clay filler. From the present study, the nanofillers played an important role in obtaining better blend morphology as compatibilizer, rather than the nucleating agent and the nanofiller content of 5 phr (parts by weight per hundred parts of rubber) was recommended for the production of EVA/NR nanocomposite foams. J. VINYL ADDIT. TECHNOL., 21:134–146, 2015. © 2014 Society of Plastics Engineers  相似文献   

15.
Poly(butylene succinate) (PBS)/(ethylene acrylic acid) (EAA)/organoclay nanocomposites were prepared by using the melt intercalation technique. EAA was used as compatibilizer and organoclay was used as inorganic filler. X‐ray diffraction and transmission electron microscopy results indicated the addition of compatibilizer led to a large increase in basal spacing of nanocomposites and better overall dispersion of organoclay in the PBS matrix. However, the basal spacing was found to be invariant as the organoclay content increased. The differential scanning calorimetry analyses revealed that the incorporation of the organoclay and EAA and the variation of organoclay content altered the melting behavior and crystallization properties of PBS. Storage and loss modulus of virgin matrix increased with the incorporation of organoclay and EAA, and a maximum for the nanocomposite with 9 wt% organoclay. Moreover, the glass transition temperatures also increased for the various organoclay‐containing samples. Mechanical properties showed an increase with the incorporation of organoclay and EAA. The 5 wt% organoclay‐filled PBS gave the highest tensile strength and notched Izod impact strength among all the composites. Further increments in organoclay loading reduced the tensile strength and notched impact strength of nanocomposites, which was thought to be the result of agglomeration. However, increments in clay loading enhanced the flexural strength and flexural modulus of nanocomposites, with a maximum at 9 wt% organoclay. J. VINYL ADDIT. TECHNOL., 23:219–227, 2017. © 2015 Society of Plastics Engineers  相似文献   

16.
The tensile and impact properties of amine‐cured diglycidyl ether of bisphenol A based nanocomposites reinforced by organomontmorillonite clay nanoplatelets are reported. The sonication processing scheme involved the sonication of the constituent materials in a solvent followed by solvent extraction to generate nanocomposites with homogeneous dispersions of the organoclay nanoplatelets. The microstructure of the clay nanoplatelets in the nanocomposites was observed with transmission electron microscopy, and the clay nanoplatelets were well dispersed and were intercalated and exfoliated. The tensile modulus of epoxy at room temperature, which was above the glass‐transition temperature of the nanocomposites, increased approximately 50% with the addition of 10 wt % (6.0 vol %) clay nanoplatelets. The reinforcing effect of the organoclay nanoplatelets was examined with respect to the Tandon–Weng and Halpin–Tsai models. The tensile strength was improved only when 2.5 wt % clay nanoplatelets were added. The Izod impact strength decreased with increasing clay content. The failure surfaces of the nanocomposites were observed with environmental scanning electron microscopy and confocal laser scanning microscopy. The roughness of the failure surface was correlated with the tensile strength. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 281–287, 2005  相似文献   

17.
This study describes the microstructure and thermal and mechanical properties of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHB/HV)–organoclay nanocomposites prepared by melt intercalation using Cloisite 30B, a monotallow bis‐hydroxyethyl ammonium‐modified montmorillonite clay. X‐ray diffractometry and transmission electron microscopy analyses clearly confirm that an intercalated microstructure is formed and finely distributed in the PHB/HV copolymer matrix because PHB/HV has a strong hydrogen bond interaction with the hydroxyl group in the organic modifier of Cloisite 30B. The nanodispersed organoclay also acts a nucleating agent, increasing the temperature and rate of crystallization of PHB/HV; therefore, the thermal stability and tensile properties of the organoclay‐based nanocomposites are enhanced. These results confirm that the organoclay nanocomposite greatly improves the material properties of PHB/HV. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 525–529, 2003  相似文献   

18.
The natural rubber/styrene butadiene rubber/organoclay (NR/SBR/organoclay) nanocomposites were successfully prepared with different types of organoclay by direct compounding. The optimal type of organoclay was selected by the mechanical properties characterization of the NR/SBR/organoclay composites. The series of NR/SBR/organoclay (the optimal organoclay) nanocomposites were prepared with various organoclay contents loading from 1.0 to 7.0 parts per hundreds of rubber (phr). The nearly completely exfoliated organoclay nanocomposites with uniform dispersion were confirmed by transmission electron microscopy (TEM) and X‐ray diffraction (XRD). The results of mechanical properties measurement showed that the tensile strength, tensile modulus, and tear strength were improved significantly when the organoclay content was less than 5.0 phr. The tensile strength and the tear strength of the nanocomposite with only 3.0 phr organoclay were improved by 92.8% and 63.4%, respectively. It showed organoclay has excellent reinforcement effect with low content. The reduction of the score and cure times of the composites indicated that the organoclay acted as accelerator in the process of vulcanization. The incorporation of a small amount of organoclay greatly improved the swelling behavior and thermal stability, which was attributed to the good barrier properties of the dispersed organoclay layers. The outstanding performance of co‐reinforcement system with organoclay in the tire formulation showed that the organoclay had a good application prospect in the tire industry, especially for the improvement of abrasion resistance and the reduction of production cost. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
Ethylene‐vinyl acetate copolymer (EVA) was melt‐mixed with multiwalled carbon nanotubes (MWCNTs) and organoclays, and the effects of simultaneous use of organoclays and MWCNTs on the surface resistivity and tensile properties of EVA nanocomposites were investigated. The surface resistivity of EVA/MWCNT nanocomposite with 1 phr of MWCNT is out of our measurement range (above 1012 Ω/square). With increasing content of organoclay from 0 to 3 phr, the surface resistivity of the EVA/MWCNT/organoclay nanocomposites with 1 phr MWCNT remains out of our measurement range. However, the surface resistivity of the nanocomposite decreases to 106 Ω/square with addition of 5 phr organoclay. The tensile properties of EVA/MWCNT/organoclay nanocomposites with 1 phr MWCNT and 5 phr organocaly are similar to those of EVA/MWCNT nanocomposites with 5 phr MWCNT except tensile modulus. POLYM. COMPOS. 2012. © 2012 Society of Plastics Engineers  相似文献   

20.
Polyethylene‐based ternary nanocomposites were prepared with different clay structures, obtained by the modification of purified Resadiye bentonite as the reinforcement, a random terpolymer of ethylene, butyl acrylate, and maleic anhydride with the trade name Lotader3210 as the compatibilizer, and linear low‐density polyethylene (LLDPE) as the polymer matrix in an intensive batch mixer. The quaternary ammonium/phosphonium salts used for the modification of bentonite were dimethyldioctadecyl ammonium (DMDA) chloride (Cl), tetrakisdecyl ammonium (TKA) bromide (Br), and tributylhexadecyl phosphonium (TBHP) Br. The effects of the physical properties and structure of the organoclay on the clay dispersion were studied at different clay contents (2 and 5 wt %) and at a compatibilizer/organoclay ratio of 2.5. The extent of organoclay dispersion was determined by X‐ray diffraction (XRD) and was verified by transmission electron microscopy (TEM), mechanical testing, and rheological analysis. XRD analysis showed that the nanocomposite with the organoclay DMDA contained intercalated silicate layers, as also verified by TEM. The TEM analysis of the nanocomposites with TBHP exhibited intercalated/partially exfoliated clay dispersion. TKA, with a crowded alkyl environment, sheltered and hindered the intercalation of polymer chains through the silicate layers. In comparison to pure LLDPE, nanocomposites with a 33–41% higher Young's modulus, 16–9% higher tensile strength, and 75–144% higher elongation at break were produced with DMDA and TBHP, respectively (at 5 wt % organoclay). The storage modulus increased by 807–1393%, and the dynamic viscosity increased by 196–339% with respect to pure LLDPE at low frequencies for the samples with DMDA and TBHP (at 5 wt % organoclay). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号