首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice bran was incorporated into low‐density polyethylene (LDPE) at different concentrations by compounding in a twin‐screw extruder and blown into films of uniform thickness. The rice bran incorporation influenced physical, mechanical, barrier, optical, thermal properties, and biodegradation of LDPE. The mechanical and optical properties decreased as the percentage of rice bran increased. The effect of rice bran on the morphology of LDPE blends was examined using scanning electron microscopy. Oxygen transmission rate and water vapor transmission rate increased with the increased content of rice bran. Addition of rice bran did not alter the melting temperature (Tm) of the blends; however the thermal stability decreased, while glass transition temperature (Tg) increased. Kinetics of thermal degradation was also investigated and the activation energy for thermal degradation indicated that for up to 10% filler addition, the dispersion and interfacial adhesion of rice bran particles in LDPE was good. Aerobic biodegradation tests using municipal sewage sludge and biodegradation studies using specific microorganism (Streptomyces species) revealed that the films are biodegradable. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4514–4522, 2006  相似文献   

2.
In this study, the mechanical and thermal properties of low‐density polyethylene (LDPE)/thermoplastic tapioca starch blends were determined with LDPE‐g‐dibutyl maleate as the compatibilizer. Mechanical testing for the evaluation of the impact strength and tensile properties was carried our as per standard ASTM methods. Thermogravimetric analysis and differential scanning calorimetry were also used to assess the thermal degradation of the blends. Scanning electron micrographs were used to analyze fracture and blend morphologies. The results show significant improvement in the mechanical properties due to the addition of the compatibilizer, which effectively linked the two immiscible blend components. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1109–1120, 2006  相似文献   

3.
LDPE/ultrahigh molecular weight polyethylene (UHMWPE) blends were prepared through a pan‐milling reactor in solid state at ambient temperature. The changes of structure and properties of LDPE/UHMWPE blends were investigated by melt flow index, mechanical properties, scanning electronic microscope (SEM), differential scanning calorimetry (DSC), and wide‐angle X‐ray diffraction. SEM photos showed that after pan‐milling treatment the dispersed approximately equiaxed UHMWPE particle became rodlike. DSC measurement illustrated that after pan‐milling treatment, the peaks of UHMWPE shift to lower temperatures while the peaks of LDPE kept stable. The more content of UHMWPE led to more evident shift. X‐ray diffraction analysis showed that the crystallinity of milled LDPE/UHMWPE blends decreased lightly, but the crystalline grain size decreased only for high content UHMWPE blends. The tensile properties of pan‐milled LDPE/UHMWPE blends also achieved significant improvement after pan milling treatment. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2487–2493, 2013  相似文献   

4.
The use of compatibilizers as interfacial agents in composites can offer a convenient way to improve the mechanical properties of immiscible polymer blends. The aim of this article is to illustrate the compatibilization effect of polyethylene‐graft‐maleic anhydride (PEgMA) in blends of low‐density polyethylene (LDPE) and n‐dodecylbenzene sulfonate doped polyaniline (PANIDBSA) prepared by extrusion. Films with different compositions of the coupling agent were evaluated with optical spectroscopy and thermomechanical, electrical, mechanical, and morphological techniques. The incorporation of PEgMA into the LDPE/PANIDBSA composites resulted in an improvement of their electrical conductivity and changes in the mechanical and morphological properties of the films. When 5 wt % of the coupling agent was added to a 30 wt % of the polyaniline‐containing film, the conductivity increased by more than three orders of magnitude, and the ductility also improved qualitatively. The morphology analysis also indicated that the addition of PEgMA produced a strengthening of the filler–matrix interfacial region. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The mechanical strengths of neat low‐density polyethylene (LDPE), a blend of LDPE with linear low‐density polyethylene (LLDPE), and a composite of LDPE with wood flour (wood/LDPE) were investigated in molten and solidified states under tensile deformation. The results are discussed in terms of the effects of LLDPE and wood contents, roller speed, and volumetric flow rate. In LLDPE/LDPE blends, incorporating LLDPE from 0 to 30 wt% into LDPE caused a slight increase in drawdown force, a larger fluctuation in drawdown force, and a reduction of maximum roller speed to failure. The mechanical properties of the solidified LLDPE/LDPE corresponded to those of the molten LLDPE/LDPE with regard to the effect of LLDPE content. For wood/LDPE composites, increasing the wood flour content in molten LDPE caused considerable reductions in drawdown time and maximum roller speed to failure. The drawdown force increased with increasing wood flour up to 10 wt% before it decreased at the wood loading of 20 wt%. A number of voids and pores on the extrudate surfaces became obvious for the composites with 20 wt% of wood content. Increasing wood content enhanced the tensile modulus for the solidified LDPE but decreased its tensile strength. Unlike those of LLDPE/LDPE blends, the changes in tensile modulus and strength of solidified wood/LDPE composites with wood content did not correspond to those of the molten composites. In all cases, the drawdown force increased with increasing roller speed. The effect of volumetric flow rate from the extruder on the mechanical strengths of the solidified blends was more pronounced than on those of the molten ones. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers  相似文献   

6.
The aim of this study was to evaluate the effect of cellulose nanofibers (CNFs) and acetylated cellulose nanofibers (ACNFs) on the properties of low‐density polyethylene/thermoplastic starch/polyethylene‐grafted maleic anhydride (LDPE/TPS/PE‐g‐MA) blends. For this purpose, CNFs, isolated from wheat straw fibers, were first acetylated using acetic anhydride in order to modify their hydrophilicity. Afterwards, LDPE/TPS/PE‐g‐MA blends were reinforced using either CNFs or ACNFs at various concentrations (1–5 wt%) with a twin‐screw extruder. The mechanical results demonstrated that addition of ACNFs more significantly improved the ultimate tensile strength and Young's modulus of blends than addition of CNFs, albeit elongation at break of both reinforced blends decreased compared with the neat sample. Additionally, biodegradability and water absorption capacity of blends improved due to the incorporation of both nanofibers, these effects being more pronounced for CNF‐assisted blends than ACNF‐reinforced counterparts. © 2018 Society of Chemical Industry  相似文献   

7.
Biodegradable blends of LDPE and cellulose acetate phthalate have been prepared. Maleic anhydride‐grafted LDPE has been added as a compatibilizer to this blend. The elastic modulus and tensile strength has been considerably improved by adding LDPE‐g‐maleic anhydride compatibilizer. Scanning electron microscope micrographs reflected the observed results for the increase in mechanical properties of the blend. Further blend morphology exhibited a deformed matrix for the compatibilized blends. Thermogravimetric analysis studies showed two‐stage degradation for the blends. Differential scanning calorimetry thermograms showed a loss of crystallinity for the LDPE phase. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
This article investigates the mechanical, morphological, and thermal properties of poly(vinyl chloride) (PVC) and low‐density polyethylene (LDPE) blends, at three different concentrations: 20, 50, and 80 wt% of LDPE. Besides, composite samples that were prepared from PVC/LDPE blend reinforced with different date palm leaf fiber (DPLF) content, 10, 20, and 30 wt%, were also studied. The sample in which PVC/LDPE (20 wt%/80 wt%) had the greatest tensile strength, elongation at break, and modulus. The good thermal stability of this sample can be seen that T10% and T20% occurred at higher temperatures compared to others blends. DPLF slightly improved the tensile strength of the polymer blend matrix at 10 wt% (C10). The modulus of the composites increased significantly with increasing filler content. Ageing conditions at 80°C for 168 h slightly improved the mechanical properties of composites. Scanning electron microscopic micrographs showed that morphological properties of tensile fracture surface are in accordance with the tensile properties of these blends and composites. Thermogravimetric analysis and derivative thermogravimetry show that the thermal degradation of PVC/LDPE (20 wt%/80 wt%) blend and PVC/LDPE/DPLF (10 and 30 wt%) composites took place in two steps: in the first step, the blend was more stable than the composites. In the second step, the composites showed a slightly better stability than the PVC/LDPE (20 wt%/80 wt%) blend. Based on the above investigation, these new green composites (PVC/LDPE/DPLF) can be used in several applications. J. VINYL ADDIT. TECHNOL., 25:E88–E93, 2019. © 2018 Society of Plastics Engineers  相似文献   

9.
The incorporation of cellulosic fibers into polyethylene matrices was studied in this work, by dispersion of fluff pulp from maritime pine in a hot polymer solution, followed by co‐precipitation of the solid components by cooling at room temperature. The above method was found suitable for proper wetting and dispersion of fibers in the polymeric matrix, as compared with melt compounding. Unmodified low density polyethylene [LDPE], modified LDPE with maleic anhydride grafted linear low density polyethylene [M‐LLDPE] and a copolymer of acrylic acid and n‐butyl acrylate polyethylene [(AA/n‐BA)‐LDPE], were used as matrices for the preparation of fiber reinforced composites. The thermal properties of these composites were determined using differential scanning calorimetry and thermogravimetric analysis. The incorporation of cellulosic fibers results in a decrease of the crystallinity of the polymer matrix, as they act as inert material. In addition, the appropriate tests were run in order to determine the density and tensile properties of the composite specimens prepared by compression molding, with filler content ranging from 10 to 40% (w/w). Composites based on modified LDPE showed improved mechanical properties. The Takayanagi model, applied to predict the Young's modulus of composites, was in very good agreement with the experimental data obtained in this work. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

10.
Uncrosslinked and chemically crosslinked binary blends of low‐ and high‐density polyethylene (PE), with ethylene vinyl acetate copolymer (EVA), were prepared by a melt‐mixing process using 0–3 wt % tert‐butyl cumyl peroxide (BCUP). The uncrosslinked blends revealed two distinct unchanged melting peaks corresponding to the individual components of the blends, but with a reduced overall degree of crystallinity. The crosslinking further reduced crystallinity, but enhanced compatibility between EVA and polyethylene, with LDPE being more compatible than HDPE. Blended with 20 wt % EVA, the EVA melting peak was almost disappeared after the addition of BCUP, and only the corresponding PE melting point was observed at a lowered temperature. But blended with 40% EVA, two peaks still existed with a slight shift toward lower temperatures. Changes of mechanical properties with blending ratio, crosslinking, and temperature had been dominated by the extent of crystallinity, crosslinking degree, and morphology of the blend. A good correlation was observed between elongation‐at‐break and morphological properties. The blends with higher level of compatibility showed less deviation from the additive rule of mixtures. The deviation became more pronounced for HDPE/EVA blends in the phase inversion region, while an opposite trend was observed for LDPE/EVA blends with co‐continuous morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3261–3270, 2007  相似文献   

11.
Studies on the mechanical properties of acetylated and phthalated starch blends with low density polyethylene (LDPE) were performed with and without LDPE‐co‐glycidyl methacrylate copolymer as compatibilizer. Impact and tensile properties of the blend specimens were measured following standard ASTM methods. Thermogravimetric analysis of esterified starches and of the blends were also conducted. Scanning electron microscopy was used to analyze the fractured and unfractured blends. Results indicate a significant improvement in the mechanical properties by starch esterification, which is further enhanced by the addition of the compatibilizer. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
Multilayer films combine properties of different polymers in a single material, attending specifications to applications such as packaging. However, the mechanical recycling for this material king is commercially less interesting because the polymeric components cannot easily be separated and the direct mechanical processing of the material leads to the immiscible and incompatible polymeric blends. The aim of this study was to evaluate properties of the blends of low-density polyethylene (LDPE) and polyamide 6 (PA6) generated from mechanical recycling of multilayer films constituted by LDPE and PA6, containing maleic anhydride grafted polyethylene (PE-g-MA) as compatibilizing agent and different amounts of virgin PA6. The LDPE/PA6 blends are immiscible for all composition and the use of PE-g-MA has showed little effect on the compatibility of the blends with high content of PA6. However, LDPE/PA6 blends with PA6 content up to 20 wt % showed considerable performance for mechanical performance that can justify the mechanical recycling of the material. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47456  相似文献   

13.
The biaxial molecular orientation of blown films made of blends of linear low density polyethylene (LLDPE) with low density polyethylene (LDPE) was characterized by two different methods: complete pole figures obtained by wide angle X‐rays diffraction (WAXD) and polarized infrared spectroscopy (IR) using the Krishnaswamy approach. The molecular orientation of the blends amorphous phase was also evaluated by polarized IR. The crystallinity of the blown films was determined by WAXD. A good correlation between the X‐ray pole figures and the polarized IR results was obtained. At all blends compositions, it was shown that the a‐axis of the polyethylene orthorhombic cell was preferentially oriented along the machine direction, the orientation degree along this direction increasing with the increase of the LDPE amount in the blends. The b‐axis changed its preferential orientation from film thickness in the 100/0 LLDPE/LDPE film to along the transverse direction with increasing LDPE in the blends. The c‐axis changed its orientation from orthogonal to normal direction in the 100/0 LLDPE/LDPE film to along the film thickness with increasing LDPE in the blends. Polarized IR characterization showed a negligible orientation of the amorphous phase. The amount of crystallinity was dependent on blend composition decreasing with the increase of LDPE content in the blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2760–2767, 2006  相似文献   

14.
The influences of ultrasonic oscillations on rheological behavior and mechanical properties of metallocene‐catalyzed linear low‐density polyethylene (mLLDPE)/low‐density polyethylene (LDPE) blends were investigated. The experimental results showed that the presence of ultrasonic oscillations can increase the extrusion productivity of mLLDPE/LDPE blends and decrease their die pressure and melt viscosity during extrusion. Incorporation of LDPE increases the critical shear rate for sharkskin formation of extrudate, crystallinity, and mechanical properties of mLLDPE. The processing behavior and mechanical properties of mLLDPE/LDPE blends were further improved in the presence of ultrasonic oscillations during extrusion. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2522–2527, 2004  相似文献   

15.
This study was concerned with the structural features and mechanical properties of polypropylene (PP)/low‐density polyethylene (LDPE) blends, which after compounding were modified by the free‐radical grafting of itaconic acid (IA) to produce [PP/LDPE]‐g‐IA in the course of reactive extrusion. To analyze the structural features of the [PP/LDPE]‐g‐IA systems, differential scanning calorimetry and relaxation spectrometry techniques were used. The data were indicative of the incompatibility of PP and LDPE in the [PP/LDPE]‐g‐IA systems on the level of crystalline phases; however, favorable interactions were observed within the amorphous phases of the polymers. Because of these interactions, the crystallization temperature of PP increased by 5–11°C, and that of LDPE increased by 1.3–2.7°C. The rapprochement of their glass‐transition temperatures was observed. The single β‐relaxation peak for the [PP/LDPE]‐g‐IA systems showed that compatibility on the level of structural units was responsible for β relaxation in the homopolymers used. Variations in the ratios of the polymers in the [PP/LDPE]‐g‐IA systems led to both nonadditive and complex changes in the viscoelastic properties as well as mechanical characteristics for the composites. Additions of up to 5 wt % PP strengthened the [PP/LDPE]‐g‐IA blended systems between the glass‐transition temperatures of LDPE and PP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1746–1754, 2006  相似文献   

16.
Nylon 12 was successfully synthesized in a twin‐screw extruder via the anionic ring‐opening polymerization of lauryllactam (LL). Maleated low‐density polyethylene (LDPE–MAH) was added to improve the mechanical properties of nylon 12. The in situ blends of nylon 12 and LDPE–MAH were characterized by mechanical testing and scanning electron microscopy. With increasing LDPE–MAH content, the tensile strength and flexural strength decreased, whereas the blend had improved impact strength and achieved supertoughness when the content of LDPE–MAH was 30 wt %. In the in situ formed low‐density polyethylene‐g‐PA12 copolymer, the domain of the LDPE–MAH phase was finely dispersed in the nylon 12 matrix. The good interface between the two phases demonstrated that LDPE–MAH could be used as a macromolecular activator to induce the polymerization of LL. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
A series of low‐density polyethylene (LDPE) blends with different amounts of ethylene–vinyl–acetate (EVA) was prepared and irradiated with 10 MeV electron beam in the range of 0–250 kGy at room temperature in air. EVA was used as a compatibilizer and softener in four different amounts: 5, 10, 20, and 30 wt %, based on polyethylene (PE). The crosslinking of the samples was studied on the basis of gel‐content measurements as well as some thermal and mechanical properties of the specimens. The results indicated that the LDPE and LDPE–EVA blends could be crosslinked by a high‐energy electron beam, of which their thermal and mechanical properties changed effectively, however, because of EVA content of the polymer; the blends were more sensitive to lower doses of radiation. These studies were carried out to obtain a suitable compound for heat‐shrinkable tubes. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1049–1052, 2004  相似文献   

18.
Lignin was graft copolymerized with methyl methacrylate using manganic pyrophosphate as initiator. This modified lignin was then blended (up to 50 wt%) with low density polyethylene (LDPE) using a small quantity of poly[ethylene‐co‐(glycidyl methacrylate)] (PEGMA) compatibilizer. The mechanical properties of the blend were substantially improved by using modified lignin in contrast to untreated lignin. Differential scanning calorimetry studies showed loss of crystallinity of the LDPE phase owing to the interaction between the blend components. Thermogravimetric analysis showed higher thermal stability of modified lignin in the domain of blend processing. This suggested that there is scope for useful utilization of lignin, which could also lead to the development of eco‐friendly products. Copyright © 2005 Society of Chemical Industry  相似文献   

19.
The effects of the starch content, photosensitizer content, and compatibilizer on the photobiodegradability of low‐density polyethylene (LDPE) and banana starch polymer blend films were investigated. The compatibilizer and photosensitizer used in the films were PE‐graft‐maleic anhydride (PE‐g‐MA) and benzophenone, respectively. Dried banana starch at 0–20% (w/w) of LDPE, benzophenone at 0–1% (w/w) of LDPE, and PE‐g‐MA at 10% (w/w) of banana starch were added to LDPE. The photodegradation of the blend films was performed with outdoor exposure. The progress of the photodegradation was followed by determining the carbonyl index derived from Fourier transform IR measurements and the changes in tensile properties. Biodegradation of the blend films was investigated by a soil burial test. The biodegradation process was followed by measuring the changes in the physical appearance, weight loss, and tensile properties of the films. The results showed that both photo‐ and biodegradation rates increased with increasing amounts of banana starch, whereas the tensile properties of the films decreased. The blends with higher amounts of benzophenone showed higher rates of photodegradation, although their biodegradation rates were reduced with an increase in benzophenone content. The addition of PE‐g‐MA into polymer blends led to an increase in the tensile properties whereas the photobiodegradation was slightly decreased compared to the films without PE‐g‐MA. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2725–2736, 2006  相似文献   

20.
The present study investigated mixed polyolefin compositions with the major component being a post‐consumer, milk bottle grade high‐density polyethylene (HDPE) for use in large‐scale injection moldings. Both rheological and mechanical properties of the developed blends are benchmarked against those shown by a currently used HDPE injection molding grade, in order to find a potential composition for its replacement. Possibility of such replacement via modification of recycled high‐density polyethylene (reHDPE) by low‐density polyethylene (LDPE) and linear‐low‐density polyethylene (LLDPE) is discussed. Overall, mechanical and rheological data showed that LDPE is a better modifier for reHDPE than LLDPE. Mechanical properties of reHDPE/LLDPE blends were lower than additive, thus demonstrating the lack of compatibility between the blend components in the solid state. Mechanical properties of reHDPE/LDPE blends were either equal to or higher than calculated from linear additivity. Capillary rheological measurements showed that values of apparent viscosity for LLDPE blends were very similar to those of the more viscous parent in the blend, whereas apparent viscosities of reHDPE/LDPE blends depended neither on concentration nor on type (viscosity) of LDPE. Further rheological and thermal studies on reHDPE/LDPE blends indicated that the blend constituents were partially miscible in the melt and cocrystallized in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号