共查询到20条相似文献,搜索用时 15 毫秒
1.
为了实现康复训练过程中高精度的轨迹跟踪控制,针对下肢康复机器人的模型参数和外界干扰等不确定性因素对其轨迹跟踪造成严重影响,提出一种模型不确定的下肢康复机器人轨迹跟踪自适应控制方法。根据所提方案,设计了相应的轨迹跟踪自适应控制器;并进行了轨迹跟踪控制仿真实验对比分析,结果表明,计算力矩控制方法在系统模型不确定时,膝关节的最大角度跟踪误差高达11.3°,髋关节最大稳态误差4.6°;而轨迹跟踪自适应控制方法在模型不确定的情况下,髋关节和膝关节的角度跟踪稳态误差均收敛于零;轨迹跟踪自适应控制方法可以显著提高下肢康复机器人轨迹跟踪的精度。 相似文献
2.
针对变电站巡检机器人动力学建模及参数辨识复杂等问题,文中提出了一种基于双闭环的巡检机器人数据驱动无模型自适应控制方法。首先,为了便于理解和仿真需要,对变电站巡检机器人的模型进行了简单的介绍。其次,根据机器人的位姿跟踪误差进行外环的设计,为内环提供虚拟参考输入。然后,根据无模型自适应控制方法进行内环控制器的设计,对机器人的虚拟参考速度进行跟踪。值得注意的是,文中所提方法只用到了输入输出数据,没有用到任何模型信息,因此是完全无模型的。最后,通过MATLAB进行仿真,验证了所提方法的有效性。 相似文献
3.
Rafael Kelly Víctor Santibez Fernando Reyes 《International Journal of Adaptive Control and Signal Processing》1998,12(1):41-62
In this paper we propose a framework to adaptive regulator design of robot manipulators. A class of global regulators for robot is characterized for which we provide guidelines to derive adaptive versions. The class of regulators is described by control laws comprising the gradient of an artificial potential energy depending in a linear manner on the robot and payload unknown parameters plus a linear velocity feedback. We provide explicit sufficient conditions on the artificial potential energy which allow to obtain an adaptive regulator which yields a stable closed-loop system and global positioning. Using this framework we revise two previously proposed adaptive regulators and we suggest two new ones. © 1998 John Wiley & Sons, Ltd. 相似文献
4.
基于改进自适应遗传算法的配电网络重构 总被引:1,自引:2,他引:1
提出了一种用于配电系统网络重构的改进型自适应遗传算法。给出了网络重构问题的数学模型及改进的自适应遗传算法。在应用遗传算法时结合配电网自身的特点,提出以环路开关号为基因、系统环路数为染色体长度的编码方法,在优化过程中采用自适应调整的交叉率和变异率,结合一定的禁忌规则.较好地提高了算法在网络重构方面的效率。在IEEE16节点、33节点、69节点3个不同规模的算例系统上进行了测试,计算结果表明,所提出的方法缩短了染色体长度,较好地抑制了不可行解的产生.无论是在收敛性、稳定性还是在计算效率上都取得了比较满意的结果。 相似文献
5.
大量新能源及新型负荷的接入,传统基于时间断面的配电网静态重构将难以适用于新型配电网络。提出了含电动汽车充电设施微电网(M-V-U)的新型配电网可靠性最优化方法。首先,建立了含电动汽车充电设施的微电网结构模型,并对其运营策略进行分析。选取了系统平均停电频率指标、系统供电不足率指标和系统有功网损指标,并建立各指标的满意度评价函数,使各指标量纲统一。在此基础上,建立了含M-V-U的配电网可靠性最优化模型,并在四种典型场景下对模型进行优化,仿真结果验证了文章所提方法及模型的有效性及正确性。 相似文献
6.
Bin Zhang Tomoaki Nakamura Masahide Kaneko 《IEEJ Transactions on Electrical and Electronic Engineering》2016,11(6):786-795
We present a framework by which the motion of an autonomous mobile guide robot is adaptively controlled. A sociable robot should adapt its speed and path to suit the users' activities, without restricting the user movement. By generating adaptive artificial potential fields for the users and the subgoal separately, and integrating them with the basic potential fields generated from obstacles, our robot can adapt to the users' activities and provide sociable tour‐guide services. The robot predicts a user's moving speed and adapts to it to maintain the social distance. Moreover, with the proposed framework, users can deviate from the guided path temporarily and return to the original task afterward. Instead of waiting for the users and taking the risk of losing them, the robot deviates from its original path to follow the users and also prepares for returning to the guiding task. The robot restarts the guiding task at that place, which ensures the least cost to reach the goal. Simulation and experimental results show that our framework can automatically generate suitable motion patterns to control the robot adaptively, making it sociable while providing tour guide services. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. 相似文献
7.
8.
Manuel A. Duarte Kumpati S. Narendra 《International Journal of Adaptive Control and Signal Processing》1996,10(6):603-621
The paper discusses in detail a new method for indirect model reference adaptive control (MRAC) of linear time-invariant continuous-time plants with unknown parameters. The method involves not only dynamic adjustment of plant parameter estimates but also those of the controller parameters. Hence the overall system can be described by a set of non-linear differential equations as in the case of direct control. Many of the difficulties encountered in the conventional indirect approach, where an algebraic equation is solved to determine the control parameters, are consequently bypassed in this method. The proof of stability of the equilibrium state of the overall system is found to be different from that used in direct control. Using Lyapunov's theory, it is first shown that the parameter errors between the parameter estimates of the identifier and the true parameters of the plant, as well as those between the actual parameters of the controller and their desired values, are bounded. Following this, using growth rates of signals in the adaptive loop as well as order arguments, it is shown that the error equations are globally uniformly stable and that the tracking (control) error tends to zero asymptotically. This in turn establishes the fact that both direct and indirect model reference adaptive schemes require the same amount of prior information to achieve stable adaptive control. 相似文献
9.
Daniela J. López‐Araujo Arturo Zavala‐Río Víctor Santibáñez Fernando Reyes 《International Journal of Adaptive Control and Signal Processing》2015,29(2):180-200
In this work, a generalized adaptive scheme for the global motion control of robot manipulators with constrained inputs is proposed. It gives rise to various families of bounded adaptive controllers defined through a general class of saturation functions. Compared with adaptive tracking control algorithms previously developed in a bounded input context, the proposed adaptive approach guarantees the motion control objective for any initial condition, avoiding discontinuities throughout the scheme, preventing the inputs to reach their natural saturation bounds, and permitting innovation on the saturating structure through its generalized form, giving a wide range of possibilities for performance improvement. Experimental results corroborate the efficiency of the proposed scheme. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
10.
11.
12.
HGA-AWNN模型在明胶浓度软测量中的应用 总被引:1,自引:0,他引:1
有效的测量明胶浓度是研究明胶生产工艺中一项非常重要的课题,如何准确、快速地测量出明胶的浓度是一项重要的任务。目前明胶浓度的检测手段多为离线人工检测,不能实现胶液浓度的在线实时测量。在研究自适应小波神经网络(AWNN)的基础上,从提高明胶浓度软测量模型的实时性和鲁棒性着手,采用混合递阶遗传算法(HGA)对模型的参数进行优化。仿真结果得到的训练精度和预测精度分别为0.45和0.31,满足精度要求,算法在实现明胶浓度的在线测量上具有一定的实用性。 相似文献
13.
14.
L. Král M. Šimandl 《International Journal of Adaptive Control and Signal Processing》2011,25(11):949-964
The article deals with a challenging problem of adaptive control design for multivariable stochastic systems with a functional uncertainty. Model of the system is based on multi‐layered perceptron neural networks where both the unknown parameters and the structure are found in real time without a necessity of any off‐line training process. The unknown parameters are estimated by a global estimation method, the Gaussian sum filter, and the structure of the neural network model is optimized by a proposed pruning method. The control law is based on a bicriterial approach to the suboptimal dual control. Two individual criteria are designed and used to introduce conflicting efforts between the estimation and control; probing and caution. A comparison of the proposed dual control and its alternative with an implementation of the pruning algorithm is shown in a numerical example. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
15.
16.
针对动态输电网络规划过程中需要考虑时间决策量的问题,提出了组合编码方式。组合编码方式将多阶段输电网络规划中的时间决策量隐含在编码中,从而使得多阶段的动态输电网络规划问题能够转换成静态规划问题进行求解。该编码方式满足表现型和基因型的1对1映射,及表现型空间与基因型空间距离上的一致性,从而保证了遗传算法的搜索效率。此外,针对动态输电网络规划的特点,对遗传算法的交叉算子、变异方式、适应度函数、惩罚系数等方面进行了改进,进一步改善了遗传算法求解多阶段输电网络规划问题的性能。以19节点系统为例对算法进行了验证,结果表明能够在较短的进化代数内得到问题的最优解。 相似文献
17.
18.
19.
20.
针对径向基神经网络(RBF)用于故障诊断时存在收敛速度慢、诊断结果准确率低等问题,提出了一种基于自适应遗传算法(AGA)优化RBF神经网络的矿井通风机故障诊断方法.采用AGA对RBF神经网络的隐含层节点数、隐层基函数的中心和宽度进行优化,以此提高RBF网络的泛化能力.通过大量收集和整理工作形成样本集,使用训练样本训练RBF网络,根据网络输出结果对通风机故障进行诊断.仿真结果表明,相较于RBF神经网络,AGA优化的RBF神经网络收敛速度更快,迭代次数更少,能够有效识别通风机故障类型,诊断结果准确率更高. 相似文献