首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interpenetrating polymer networks (IPNs) based on a nitrile rubber (NBR)–phenolic resin (PH) blend and poly(alkyl methacrylates) were synthesized by a sequential method. The cured blends were swollen in a methacrylate monomer containing a crosslinker and initiator. The swollen rubber sheets were cured at 60°C. From the swelling study of the monomer, it was found that IPN formation in the blend is in between the rubber and poly(alkyl methacrylate) phases only. The IPNs thus formed were characterized for their tensile, dynamic mechanical, and solvent-resistance characteristics. The tensile strength of the IPNs are dependent on the PH content; at a lower content of PH (up to 20 parts), IPNs have a higher strength compared to their corresponding blends, whereas at a higher content of PH (beyond 30 parts), the strength decreases. But for every NBR/PH-fixed composition, the strength of IPNs was found to be increasing in the order of PBuMA < PEMA < PMMA. The dynamic property results showed that NBR/PH blends are incompatible. The storage modulus of IPNs are always higher than their corresponding blends at all temperatures. The tan δ peaks of IPNs are broad, indicating the presence of microphase-separated domains. The IPNs show superior solvent-resistance characteristics compared to the blends. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68:255–262, 1998  相似文献   

2.
Sequential interpenetrating polymer networks (IPNs) based on nitrile rubber and poly(methyl methacrylate) (PMMA) were synthesized. IPN compositions were varied by varying the swelling time. Two methods were adopted for making IPNs. The first method is “single‐step IPN” (SIPN) and the second method is “multistep IPN” (MIPN). The compositions were fixed around 90, 80, 70, 60 and 50% of NBR. In SIPN mode, swelling in monomer and subsequent curing was done once. In MIPN mode, swelling in monomer and curing was repeatedly done. Tensile strength of IPNs was found to increase with PMMA content, MIPN showing higher strength compared to SIPN. Dynamic modulus showed a similar trend. The tan δ value was found to decrease with PMMA content. At 62/38 nitrile rubber (NBR)/PMMA, MIPN composition isolated tan δ peaks appeared near glass transition temperatures of NBR and PMMA, respectively. Scanning electron micrograph showed phase‐separated morphology at the same MIPN composition. Solvent resistance increased with IPN formation maintaining higher resistance for MIPN compared to SIPN. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 354–360, 2004  相似文献   

3.
NBR/phenolic interpenetrating networks (IPNs) offer a wide variety of mechanical and physical properties at moderately high temperature. This temperature stability along with oil and fuel resistance property has made IPNs appropriate candidates for various applications. In the present work, NBR compounds containing 5, 7 and 12 phr of Novolac, as a curable phenolic resin was formulated using a two-roll mill. Low and high acrylonitrile NBR; KNB 35L and Europrene N4560 were selected in the compound and the same condition of mixing was applied in the blend preparation stage. Curing test, followed by a cooling period and the stress relaxation test were carried out consecutively and automatically in a rubber process analyzer. The samples presented various relaxation times. The relaxation curves were well estimated by Maxwell model and the Prony coefficients were determined. Furthermore, compression test was performed on the samples, so that the set or permanent deformation of each sample was measured. The results of both tests have indicated that by adding phenolic resin into the NBR matrices, the viscoelastic behavior of the compounds become more elastic, to the detriment of the viscous component. This phenomenon would be due to IPN formation in the compounds. In addition, by increasing the phenolic resin content in the compounds, the difference between maximum and minimum torque (M H ? M L) value became greater, which is an indicator of higher cross-link density and IPN formation. Swelling test results confirmed more extensive cross-links in the compounds by addition of more resin into the compound.  相似文献   

4.
Summary In this study, interpenetrating polymer networks (IPNs) and IPN composite materials were prepared by in situ polymerization of urethane dimethacrylate (UDMA) and bisphenol-A diglycidyl ether epoxy resin (DGEBA) with or without silica nanoparticles. Dynamic mechanical analysis (DMA), three-point bending test, thermogravimetric analysis (TGA) and visible spectrometry were performed to evaluate the physical properties of the resulting IPNs and IPN composite materials. The IPNs showed high transparency and higher elastic modulus and strength than that of each homopolymer at ratio of UDMA/ DGEBA is 70/30. The IPN composites maintained high transparency in spite of the addition of silica nanoparticles. Moreover, elastic modulus and surface hardness of the IPN composites increased with increasing silica content.  相似文献   

5.
Interpenetrating polymer networks (IPN) of Novolac/poly(ethyl acrylate) have been prepared via in situ sequential technique of IPN formation. Both full and semi IPNs were characterized with respect to their mechanical properties that is, ultimate tensile strength (UTS), percentage elongation at break, modulus, and toughness. Physical properties of these were evaluated in terms of hardness, specific gravity, and crosslink density. Thermal behavior was studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The morphological features were observed by an optical microscope. There was a gradual decrease in modulus and UTS, with consequent increases in elongation at break and toughness for both types of IPNs with increasing proportions of PEA. An inward shift and lowering (with respect to pure phenolic resin) of the glass transition temperatures of the IPNs with increasing proportions of PEA were observed, thus, indicating a plasticizing influence of PEA on the rigid, brittle, and hard matrix of crosslinked phenolic resin. The TGA thermograms exhibit two‐step degradation patterns. An apparent increase in thermal stability at the initial stages, particularly, at lower temperature regions, was followed by a substantial decrease in thermal stability at the higher temperature region under study. As expected, a gradual decrease in specific gravity and hardness values was observed with increase in PEA incorporation in the IPNs. A steady decrease in crosslink densities with increase in PEA incorporation was quite evident. The surface morphology as revealed by optical microscope clearly indicates two‐phase structures in all the full and semi IPNs, irrespective of acrylic content. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

6.
The formation processes of unfilled and filled interpenetrating polymer networks (IPNs) and some of their physico-mechanical properties have been investigated. The IPN formation kinetics and the constituent network curing rates determine the rate and degree of microphase separation. This in turn determines the boundary layer composition and structure. Introduction of filler into the IPN during formation affects greatly the crosslinking reaction and the microphase segregation of homopolymers. It has been shown that the degree of phase segregation in filled IPNs differs from that in unfilled ones. All the fillers were found to shorten the time of internal stress appearance and to increase its value for IPNs with predominantly high-modulus component content. Some filled IPNs were shown to have greater thermodynamic stability than unfilled ones.  相似文献   

7.
Interpenetrating polymer networks (IPN) of novolac/poly (2‐ ethyl hexyl acrylate) (PEHA) have been prepared via in situ sequential technique of IPN formation. Full and semi‐IPNs were prepared with different blend ratios (w/w) e.g., 90 : 10, 80 : 20, and 70 : 30 in which the major constituent was novolac resin. A gradual decrease in specific gravity and hardness values was observed with increase in PEHA incorporation. A steady decrease in crosslink density with increase in PEHA fraction in the IPNs was quite evident. The IPNs were characterized with respect to their mechanical properties, e.g., ultimate tensile strength, percentage elongation at break, modulus, and toughness. Thermal behavior was studied by differential scanning calorimetry and thermogravimetric analysis. A plasticizing influence of PEHA on the rigid, brittle, and hard matrix of crosslinked phenolic resin is evidenced from the mechanical and thermal properties. The two‐phase surface morphology is revealed by scanning electron microscope. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
In this article, the cellulose‐chitosan interpenetrating polymer network (IPN) films were prepared and fabricated as the electro‐active paper actuator. The characteristics of the cellulose–chitosan IPN films were examined by SEM, FT‐IR, XRD, DSC, and tensile test. The performance of the IPNs based actuator was evaluated in terms of bending displacement with respect to the actuation frequency, voltages, humidity levels, chitosan content, and time variation. It was observed that with chitosan content increasing in the IPNs, the crystallinity decreased and the network became denser, which caused the Young's modulus to increase. Chitosan content in IPNs also significantly affected the bending performance. The optimum IPN weight ratio of cellulose and chitosan was 60 : 40. The maximum bending displacement of 7.2 mm was found at 80% relative humidity level. In terms of durability, the bending lifetime at 70% humidity level was about 10 h with 17% performance degradation. More issues on the actuator performance and durability are addressed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
The novel interpenetrating polymer networks (IPNs) based on cycloaliphatic epoxy resin (CER) containing cyclohexene oxide groups and tri-functional acrylate, trimethylol-1, 1, 1-propane trimethacrylate (TMPTMA) were synthesized. The formation of the IPNs was on-line monitored by means of polarizing optical microscope, time-resolved light scattering and Fourier transform infrared spectroscopy. The morphological and mechanical properties of the resultant IPNs were investigated and evaluated with scanning electron microscopy (SEM) and dynamical thermal mechanical analysis (DTMA), respectively. The on-line monitoring results showed that during the course of the IPNs formation, the TMPTMA component was cured more quickly than the CER component, leading to the formation of the sequential IPNs. During the early curing stage, there were the phase separation phenomena in the CER/TMPTMA system. The SEM results revealed that although there were some slight phase separation phenomena in the CER/TMPTMA system in the early curing stage, the resultant IPNs displayed the homogeneous structures and did not show the apparent phase separation morphology. The DTMA results revealed that the resulting IPNs exhibited rather higher modulus and denser cross-linking network structure than the neat CER system.  相似文献   

10.
Semi‐interpenetrating polymer networks (semi‐IPNs) composed of a dicyanate resin and a poly(ether sulfone) (PES) were prepared, and their curing behavior and mechanical properties were investigated. The curing behavior of the dicyanate/PES semi‐IPN systems catalyzed by an organic metal salt was analyzed. Differential scanning calorimetry was used to study the curing behavior of the semi‐IPN systems. The curing rate of the semi‐IPN systems decreased as the PES content increased. An autocatalytic reaction mechanism was used to analyze the curing reaction of the semi‐IPN systems. The glass‐transition temperature of the semi‐IPNs decreased with increasing PES content. The thermal decomposition behavior of the semi‐IPNs was investigated. The morphology of the semi‐IPNs was investigated with scanning electron microscopy. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1079–1084, 2003  相似文献   

11.
This article describes the synthesis and characterization of interpenetrating polymer networks (IPNs) from hydrophilic and hydrophobic polymers using emulsification technique. Tween 20 (0.001 wt % of gelatin) was employed as emulsifier for the preparation of semi and full IPNs. Gelatin (G), a hydrophilic component was crosslinked by glutaraldehyde (Glu) and divinyl ester (DVE), a hydrophobic component was polymerized/crosslinked using 3 mol % of AIBN as an initiator. Structural characterization was done using FTIR (doublet at 1620 and 1636 cm?1) and NMR (signals in the range of δ = 5–7 ppm), which confirmed the formation of DVE. Several samples were prepared by varying the ratio of gelatin : DVE (w/w) and the Glu concentration. The swelling characteristics (as a function of varying pH maintained using buffers) and degradation behavior (in phosphate buffer saline pH 7.4) of hydrogels was studied to investigate the effect of composition and crosslinker concentration. Percent water uptake decreased from 496 to 181 at pH 7.4 and pH 6.5 in IPNs as the concentration of DVE increased from 0.3 g to 0.7 g per g of gelatin. Semi‐IPNs, where DVE was not polymerized, demonstrated higher swelling at pH 7.4 in contrast to pH 6.5 irrespective of Glu concentration. Gelatin hydrogels degraded within 180 h and IPNs degraded within 290 h whereas DVE did not degrade till the study period of 20 days. The formation of IPN was confirmed by thermal characterization (DSC, TGA) and scanning electron microscopy (SEM). Observation of cross‐sectional microstructure of disrupted honeycomb of Gx into closely packed fiber‐like structure upon interpenetration by SEM clearly suggests the formation of IPN. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
Frédéric Vidal 《Polymer》2006,47(11):3747-3753
Interpenetrating polymer networks combining cellulose acetate butyrate (CAB) and α,ω-divinyl-polydimethylsiloxane (PDMS) in different weight proportions have been synthesized. The synthesis involves a one pot-one shot process in which all components are first mixed together. For each composition, the relative CAB and PDMS network formation rates are adjusted through the concentration of DBTDL used as CAB network formation catalyst. Thus, the chemically independent networks are formed quasi-simultaneously in order to avoid phase separation. The CAB cross-linking density effect on the PDMS/CAB IPN mechanical properties has also been particularly studied. All synthesized IPNs are transparent and only one mechanical relaxation temperature lying between those of the single CAB and PDMS networks is observed by DMTA analysis. These results show that the networks are correctly interpenetrated and no phase separation is observed at the DMTA level. Some mechanical properties of the PDMS network are significantly improved in this IPN combination and their stress-strain behavior has highlighted a synergistic effect arising from the IPN architecture. Thus, these IPNs exhibit many characteristics, which would allow defining them as close to ‘true’ IPNs.  相似文献   

13.
Interpenetrating polymer networks (IPNs) combining polybutadiene (PB) and poly(ethylene oxide) (PEO) show very close relaxations leading to a partially resolved signal as determined by DMA. Nevertheless it is shown in this paper, in complement to part I, that it is still possible to get a better insight into the material morphology through two different approaches. First DMA experimental data are compared with theoretical predictions obtained from mechanical coupling models (Christensen and Lo and Budiansky approaches). Second, it is shown that full splitting of DMA signals can be induced providing that LiClO4 is introduced in polybutadiene/poly(ethylene oxide) IPNs. Indeed the Li+ cation has a particular affinity for the ethylene oxide segments in the PEO network. IPN morphologies are then discussed much more accurately according to LiClO4 loaded IPN mechanical behaviour. This concept could be usefully generalized to other types of polymers IPN associations as long as a selective complexation agent for one of the partner networks can be found that selectively modifies one particular property of this partner network.  相似文献   

14.
Interpenetrating polymer networks (IPNs) were prepared from hydroxytelechelic polybutadiene (HTPB) and poly(ethylene oxide) (PEO) via an in situ process. The PEO network was obtained by free radical copolymerization of poly(ethylene glycol) methacrylate and dimethacrylate. Addition reactions between HTPB and a pluri-isocyanate cross-linker (Desmodur® N3300) led to the HTPB network. Polymerization kinetics were followed by Fourier transform spectroscopy in the near and middle infrared. Mechanical properties and the IPN morphology were investigated by dynamic mechanical analysis and transmission electron microscopy. The relation between the formation rates of the two networks and the IPN final morphology is discussed.  相似文献   

15.
Great attention has been paid to the composites with interpenetrating polymer networks (IPNs) because of their special performance. However, the influence of sedimentation and convection from different gravity environments on the formation of IPNs and the properties of IPNs blends has received little attention. To understand their influence, environments with different gravity accelerations of 0g, 1g, and 2g were simulated with a superconducting magnet, and tests, including differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), coefficient of thermal expansion (CTE), scanning electron microscopy, and three‐point bending, of the IPNs blends cured in different gravity environments were conducted and analyzed. Fourier transform infrared spectroscopy, DSC, and DMA proved the formation of IPNs during the reaction between the polyurethane prepolymer (PUP) and epoxy resin (E51). The curves of DSC also certified the differences in the curing degree between the different parts along the direction of gravity of a sample. With the increase of mass fraction of PUP, the change trends of the storage modulus presented a linear decrease when samples cured in microgravity environment, but presented a parabolic trend when samples were cured in terrestrial environment. The damping properties of samples cured in simulated microgravity environments are better than those cured in terrestrial environment. With the increase in the simulated acceleration of gravity, the diameter of dispersed phase in a sea‐island structure increased, but their number decreased and the bending stress and CTE of the IPN blends all decreased. These results show the formation of IPNs was affected by different gravity values, and the thermal and mechanical properties of the IPN composites were influenced by the changed IPN components. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42063.  相似文献   

16.
Interpenetrating polymer networks (IPNs) of 2-hydroxyethyl methacrylate-terminated polyurethane (HPU) and polyurethane (PU) with different crosslinking densities of the PU network were prepared by simultaneous solution polymerization. Dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC) show that compatibility of component polymers in IPN formation depends on the crosslinking density of the PU network. Physical properties such as density and water absorption rely on the subtle balance between the degree of phase separation and the crosslinking density of the PU network. In spite of the occurrence of phase separation, the tensile moduli and tensile strength of the IPNs increase with the crosslinking density of the PU network. Morphological observation by scanning electron microscopy revealed different fracture surfaces between the compatible and incompatible IPNs. Surface characteristics of the IPNs, indicated as hydrogen bonding index and hard-to-soft segment ratio, are altered considerably by varying surface morphologies. Improved blood compatibility of IPN membranes is due to the variation of the hydrophilic and hydrophobic domain distribution.  相似文献   

17.
The viscoelastic and mechanical properties and the morphology of polyurethane (PUR)/ olystyrene (PS) interpenetrating polymer networks (IPNs) containing ionic groups have been investigated. Dynamic mechanical thermal analysis (DMTA) revealed a pronounced change in the viscoelastic properties upon the introduction of ionic groups. For the 70 : 30 and 60 : 40 PUR/PS IPN compositions, the DMTA data changed from a dominant PUR to a dominant PS loss factor peak. Higher intertransition loss factor values indicated a significant improvement of IPN component mixing with increasing ionic content. The stress at break values increased only moderately, whereas sharp rises in Young's modulus and hardness values were found at 2 wt % ionic groups. At the same time, the strain at break values decreased by half. Scanning and transmission electron microscopy (TEM) indicated a grossly phase-separated morphology for the 70 : 30 PUR/PS IPN without ionic groups. With increasing methacrylic acid (MAA) content, the PS phase domain sizes decreased. At 2 wt % of ionic groups, a TEM micrograph showed interconnected PS phase domains resembling a network structure. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1973–1985, 1998  相似文献   

18.
通过共混法制备了聚氨酯(PU)/环氧树脂(EP)互穿网络聚合物(IPN),采用示差扫描量热法(DSC)和动态机械分析(DMA)对IPN形成过程中的固化反应动力学及产物IPN的相容性进行了研究,结果表明,m(PU)/m(EP)=10∶6的IPN体系的反应级数为0.95,表观活化能为169.23 kJ/mol;PU/EP IPN只有1个玻璃化转变温度,相容性好。  相似文献   

19.
Full and semi interpenetrating polymer networks (IPNs) based on phenol‐formaldehyde resin (Novolac) and poly(methyl methacrylate) have been made by in situ sequential technique of IPN formation. These systems of different compositions were characterized with respect to their mechanical properties, such as, ultimate tensile strength (UTS), percentage elongation at break, modulus, and toughness. Thermal properties were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Extent of phase mixing of the two polymers was envisaged from the micrographs obtained by polarizing light microscopy (PLM). The effects of variation of the blend ratios on the above‐mentioned properties were examined. There was a decreasing trend of modulus and UTS with consequent increases in elongation at break and toughness for both types of IPNs with increase in proportions of PMMA. Lowering of glass transition temperatures (with respect to pure crosslinked Novolac resin) of the IPNs with increasing proportions of PMMA was observed, indicating a plasticizing influence of PMMA on the rigid and brittle matrix of phenolic resin. The TGA thermograms exhibit lowering in thermal stability of the IPNs with respect to pure phenolic resin in the regions of higher temperatures. With increase in proportion of PMMA the onset of degradation of the IPNs is shifted towards lower temperature zone. The surface morphology as revealed by PLM indicates distribution of discrete domains of PMMA in the phenolic resin matrix. The two phase interfaces are quite sharp at higher concentrations of PMMA. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2764–2774, 2004  相似文献   

20.
BACKGROUND: Polystyrene/polystyrene (PS/PS) interpenetrating polymer networks (IPNs) represent ideal homo‐IPNs. Whether phase separation occurs in this system has been a long‐standing problem, which is closely related to the self‐organization mechanism in IPN formation and is important to the exploration of new polymer morphologies and properties by topological isomerism. RESULTS: A series of bead samples of PS/PS sequential IPNs with the same nominal divinylbenzene contents were synthesized by suspension polymerization, followed by sulfonation. Scanning electron micrographs and energy‐dispersive X‐ray mapping show unique distinctive topography on both surfaces and fractured surfaces and large heterogeneity in sulfonation of the PS/PS IPN beads, which for the first time provide visual evidence for dual‐phase continuity in PS/PS IPNs. CONCLUSION: The phase separation behavior is proposed to be due to hydrodynamic screening, architectural asymmetry and excluded volume interactions between network I and the precursor chains of network II. This is considered to represent pure IPN effects in sequential formation and may shed light on the general constitution mechanism and molecular design of IPN materials. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号