首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
α,ω‐Dihydroxy‐polydimethylsiloxane/polystyrene (PDMS/PS) blends were prepared by the solution polymerization of styrene (St) in the presence of α,ω ‐dihydroxy‐polydimethylsiloxane (PDMS), using toluene as solvent and benzoyl peroxide (BPO) as initiator. The PDMS/PS blends obtained by this method are a series of stable, white gums, which were vulcanized to elastomers at room temperature with methyl‐triethoxysilicane (MTES). The use level of MTES was far more than the necessary amount used to end‐link hydroxy‐terminated chains of PDMS, with the excess being hydrolyzed to crosslinked networks, which were similar to SiO2 and acted as filler. Investigations were carried out on the elastomeric materials by extraction measurement, swelling measurement, and scanning electron microscopy. The extraction data show that at each composition the amount of soluble fraction is less than expected and the difference between experimental and theoretical values becomes more and more significant as PS content increases. This is mainly due to the grafting of PS onto PDMS and the entanglement of PS in the interpenetrating polymer network (IPN), which consists of either directly linked PDMS chains or chains linked via PS grafts and is formed by free radical crosslinking of PDMS during the radical polymerization of St. PS grafted on PDMS is insoluble and PS entangled in the IPN is difficult to extract. Both render the soluble fraction to be less than expected. As the St content in preparing PDMS/PS blends increases, the probability of grafting PS onto PDMS also increases, which may subsequently produce a higher crosslinking level of PDMS networks that linked via PS grafts by radical crosslinking. As a result, not only the amount of insoluble PS increases but also PS entangled in the IPN is more difficult to extract. Scanning electron microscopy demonstrates that the elastomer system has a microphase‐separated structure and a certain amount of PS remains in the PDMS networks after extraction, which is in accordance with the extraction data. Moreover, the mechanical properties of the elastormeric materials have been studied in detail. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3542–3548, 2004  相似文献   

2.
Polydimethylsiloxane/polystyrene (PDMS/PS) blends were prepared by radical copolymerization of styrene (St) and divinylbenzene (DVB) in the presence of α,ω‐dihydroxy‐polydimethylsiloxane (PDMS), using benzoyl peroxide as initiator. The PDMS/PS blends obtained by this method are a series of stable, white gums, when the feed ratio of PDMS to St is 60/40 and DVB to St is not more than 2.0 wt %. Elastomers based on PDMS/PS blends were formed by crosslinking PDMS with methyl‐triethoxysilicane (MTES). The MTES dosage was much larger than the amount necessary for end‐linking hydroxy‐terminated chains of PDMS, with the excess being hydrolyzed to crosslinked networks, which were similar to SiO2 and acted as filler. Mechanical property measurements show that the elastomers thus formed exhibit superior mechanical properties with respect to pure PDMS elastomer and the elastomers based on PDMS/PS system we prepared before. Moreover, investigations were carried out on the elastomers by extraction measurement and scanning electron microscopy (SEM). The extraction data show that the sol‐fraction decreases with increasing the feed ratio of DVB to St. SEM observation demonstrates that the elastomer has a microphase‐separated structure consisting of dispersed PS domains within a continuous PDMS matrix, and the extracted material exhibits a porous structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
In this study, the structural and morphological properties of poly(methyl methacrylate)/poly(acrylonitrile‐g‐(ethylene‐co‐propylene‐co‐diene‐g‐styrene) (PMMA‐AES) blends were investigated with emphasis on the influence of the in situ polymerization conditions of methyl methacrylate. PMMA‐AES blends were obtained by in situ polymerization, varying the solvent (chloroform or toluene) and polymerization conditions: method A—no stirring and air atmosphere; method B—stirring and N2 atmosphere. The blends were characterized by infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and dynamic mechanical analysis (DMA). The results showed that the PMMA‐AES blends are immiscible and present complex morphologies. This morphology shows an elastomeric dispersed phase in a glassy matrix, with inclusion of the matrix in the elastomer domains, suggesting core shell or salami morphology. The occlusion of the glassy phase within the elastomeric domains can be due to the formation of graft copolymer and/or phase inversion during polymerization. However, this morphology is affected by the polymerization conditions (stirring and air or N2 atmosphere) and by the solvent used. The selective extraction of the blends' components and infrared spectroscopy showed that crosslinked and/or grafting reactions occur on the elastomer chains during MMA polymerization. The glass transition of the elastomer phase is influenced by morphology, crosslinking, and grafting degree and, therefore, Tg depends on the polymerization conditions. On the other hand, the behavior of Tg of the glassy phase with blend composition suggests miscibility or partial miscibility for the SAN phase of AES and PMMA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Silicone‐polyacrylate polymer blends were prepared using methacryloxy‐propyl‐trimethoxysilane (MAPTMS) as a compatibilizing agent (chemical linker). Energy dispersive X‐ray spectroscopy elemental mapping showed silicon and carbon rich regions corresponding to poly(dimethyl‐siloxane) (PDMS) and poly(methyl methacrylate) PMMA domains. Infrared spectroscopy confirmed that covalent bonds are formed between PMMA and the organosilane, MAPTMS. The organosilane addition decreased the water‐to‐blend contact angles and tended to increase the modulus of elasticity and tensile strength of the resulting PDMS‐PMMA blends. Cytotoxicity was not detectable for any samples. Silicone‐based materials are currently used as prosthetic materials to replace damaged tissues; the methodology described here can be readily adapted to this application with improved performance. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers  相似文献   

5.
The grafting of the methyl methacrylate (MMA) monomer onto natural rubber using potassium persulfate as an initiator was carried out by emulsion polymerization. The rubber macroradicals reacted with MMA to form graft copolymers. The morphology of grafted natural rubber (GNR) was determined by transmission electron microscopy and it was confirmed that the graft copolymerization was a surface‐controlled process. The effects of the initiator concentration, reaction temperature, monomer concentration, and reaction time on the monomer conversion and grafting efficiency were investigated. The grafting efficiency of the GNR was determined by a solvent‐extraction technique. The natural rubber‐g‐methyl methacrylate/poly(methyl methacrylate) (NR‐g‐MMA/PMMA) blends were prepared by a melt‐mixing system. The mechanical properties and the fracture behavior of GNR/PMMA blends were evaluated as a function of the graft copolymer composition and the blend ratio. The tensile strength, tear strength, and hardness increased with an increase in PMMA content. The tensile fracture surface examined by scanning electron microscopy disclosed that the graft copolymer acted as an interfacial agent and gave a good adhesion between the two phases of the compatibilized blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 428–439, 2001  相似文献   

6.
Poly(methyl methacrylate) – polycaprolactone (PMMA/PCL) microheterogeneous beads were synthesized by suspension polymerization starting from methyl methacrylate (MMA) monomer and PCL, which was synthesized by ring‐opening polymerization of ε‐caprolactone using ZnCl2 as initiator. The resulting polymer was fully characterized by 1H and 13C NMR, differential scanning calorimetry (DSC), gel permeation chromatography (GPC) and dynamic mechanical thermal analysis (DMTA). The size distribution and morphology of the resulting beads were investigated by optical microscopy and scanning electron microscopy (SEM). Moreover, blends of PMMA beads and PCL in different proportions were prepared and the morphology of the films was examined by optical microscopy. The low compatibility between PMMA and PCL was clearly evidenced through these experiments.  相似文献   

7.
Well‐defined poly(dimethylsiloxane)‐block‐poly(methyl methacrylate)‐block‐poly(2,2,3,3,4,4,4‐heptafluorobutyl methacrylate) (PDMS‐b‐PMMA‐b‐PHFBMA) triblock copolymers were synthesized via atom transfer radical polymerization (ATRP). Surface microphase separation in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films was investigated. The microstructure of the block copolymers was investigated by transmission electron microscopy (TEM) and atomic force microscopy (AFM). Surface composition was studied by X‐ray photoelectron spectroscopy (XPS). The chemical composition at the surface was determined by the surface microphase separation in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films. The increase of the PHFBMA content could strengthen the microphase separation behavior in the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymer films and reduce their surface tension. Comparison between the PDMS‐b‐PMMA‐b‐PHFBMA triblock copolymers and the PDMS‐b‐PHFBMA diblock copolymers showed that the introduction of the PMMA segments promote the fluorine segregation onto the surface and decrease the fluorine content in the copolymers with low surface energy. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The miscibility was investigated in blends of poly(methyl methacrylate) (PMMA) and styrene‐acrylonitrile (SAN) copolymers with different acrylonitrile (AN) contents. The 50/50 wt % blends of PMMA with the SAN copolymers containing 5, 35, and 50 wt % of AN were immiscible, while the blend with copolymer containing 25 wt % of AN was miscible. The morphologies of PMMA/SAN blends were characterized by virtue of scanning electron microscopy and transmission electron microscopy. It was found that the miscibility of PMMA/SAN blends were in consistence with the morphologies observed. Moreover, the different morphologies in blends of PMMA and SAN were also observed. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
An approach to achieve confined crystallization of ferroelectric semicrystalline poly(vinylidene fluoride) (PVDF) was investigated. A novel polydimethylsiloxane‐block‐poly(methyl methacrylate)‐block‐polystyrene (PDMS‐b‐PMMA‐b‐PS) triblock copolymer was synthesized by the atom‐transfer radical polymerization method and blended with PVDF. Miscibility, crystallization and morphology of the PVDF/PDMS‐b‐PMMA‐b‐PS blends were studied within the whole range of concentration. In this A‐b‐B‐b‐C/D type of triblock copolymer/homopolymer system, crystallizable PVDF (D) and PMMA (B) middle block are miscible because of specific intermolecular interactions while A block (PDMS) and C block (PS) are immiscible with PVDF. Nanostructured morphology is formed via self‐assembly, displaying a variety of phase structures and semicrystalline morphologies. Crystallization at 145 °C reveals that both α and β crystalline phases of PVDF are present in PVDF/PDMS‐b‐PMMA‐b‐PS blends. Incorporation of the triblock copolymer decreases the degree of crystallization and enhances the proportion of β to α phase of semicrystalline PVDF. Introduction of PDMS‐b‐PMMA‐b‐PS triblock copolymer to PVDF makes the crystalline structures compact and confines the crystal size. Moreover, small‐angle X‐ray scattering results indicate that the immiscible PDMS as a soft block and PS as a hard block are localized in PVDF crystalline structures. © 2019 Society of Chemical Industry  相似文献   

10.
Using the rheological measurements, the effect of three types of organoclays on the morphology and nanoclay dispersion in the poly(acrylonitrile‐butadiene‐styrene)/poly(methyl methacrylate) (ABS/PMMA) blends was investigated. For this purpose, polymers were melt blended with 2 and 4 wt% of organoclays in a twin‐screw extruder. Structural analysis of the blends and nanocomposites through the rheometery, theoretical approach, X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy revealed that the clay content and interaction level between clays and the polymers dominated the morphology. While the morphology of the blends varied by PMMA content, smaller PMMA domains were observed for blends containing clay particles. Better‐interacted and intercalated nanoclays were mainly located within the interface at lower content. While, at higher content, they tended to migrate into the dispersed phase. Theoretical calculations of interfacial tensions and wetting coefficients confirmed this kind of migration. POLYM. COMPOS., 33:1893–1902, 2012. © 2012 Society of Plastics Engineers  相似文献   

11.
Thermoset materials obtained from styrene/vinyl ester resins of different molecular weights modified with poly(methyl methacrylate) (PMMA) were prepared and studied. Scanning electron microscopy and transmission electron microscopy micrographs of the fracture surfaces allowed the determination of a two‐phase morphology of the modified networks. Depending on the molecular weight of the vinyl ester oligomer, the initial content of the PMMA additive, and the selected curing temperature, different morphologies were obtained, including the dispersion of thermoplastic‐rich particles in a thermoset‐rich matrix, cocontinuous structures, and the dispersion of thermoset‐rich particles in a thermoplastic‐rich matrix (phase‐inverted structure). Density measurements were performed to determine the effect of the PMMA‐modifier concentration and curing temperature on the volume shrinkage of the final materials. The development of cocontinuous or thermoplastic‐rich matrices was not too effective in controlling the volume shrinkage of the studied vinyl ester systems. The evaluation of the dynamic mechanical behavior, flexural modulus, compressive yield stress, and fracture toughness showed that the addition of PMMA increased the fracture resistance without significantly compromising the thermal or mechanical properties of the vinyl ester networks. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
Poly(methyl methyacrylate)‐block‐polydimethylsiloxane (PMMA‐b‐PDMS) copolymers with various compositions were synthesized with PDMS‐containing macroazoinitiator (MAI), which was first prepared by a facile one‐step method in our lab. Results from the characterizations of X‐ray photoelectron spectroscopy (XPS), contact angle measurements, and atomic force microscopy (AFM) showed that the copolymer films took on a gradient of composition and more PDMS segments enriched at the film surfaces, which then resulted in the low surface free energy and little microphase separation at the film surfaces. By contrast, transmission electron microscopy (TEM) analysis demonstrated that distinct microphase separation occurred in bulk. Slight crosslinking of the block copolymers led to much steady morphology and more distinct microphase separation, in particularly for copolymers with low content of PDMS. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

13.
In the present work, blends between poly(methyl methacrylate) (PMMA) or its copolymer with butyl methacrylate P(MMA‐co‐BMA) and poly(ethylene‐co‐vinyl acetate) (EVA) rubbers obtained applying the reactive blending principles were deeply investigated to clarify the chemistry of the system. A copolymeric phase, which is created in situ, was isolated and its chemical structure was determined through NMR analysis. The blends were also crosslinked with a flexible dimethacrylate to realize semi‐interpenetrated networks. The blends were characterized for their properties of interest (mechanical and optical behaviors). Particularly, an accurate investigation of the optical properties as a function of the temperature was performed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

14.
The miscibility and crystallization kinetics of the blends of random poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) [P(HB‐co‐HV)] copolymer and poly(methyl methacrylate) (PMMA) were investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was found that P(HB‐co‐HV)/PMMA blends were miscible in the melt. Thus the single glass‐transition temperature (Tg) of the blends within the whole composition range suggests that P(HB‐co‐HV) and PMMA were totally miscible for the miscible blends. The equilibrium melting point (T°m) of P(HB‐co‐HV) in the P(HB‐co‐HV)/PMMA blends decreased with increasing PMMA. The T°m depression supports the miscibility of the blends. With respect to the results of crystallization kinetics, it was found that both the spherulitic growth rate and the overall crystallization rate decreased with the addition of PMMA. The kinetics retardation was attributed to the decrease in P(HB‐co‐HV) molecular mobility and dilution of P(HB‐co‐HV) concentration resulting from the addition of PMMA, which has a higher Tg. According to secondary nucleation theory, the kinetics of spherulitic crystallization of P(HB‐co‐HV) in the blends was analyzed in the studied temperature range. The crystallizations of P(HB‐co‐HV) in P(HB‐co‐HV)/PMMA blends were assigned to n = 4, regime III growth process. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3595–3603, 2004  相似文献   

15.
A novel reactive phosphorus–nitrogen‐containing monomer, N‐(2‐(5,5‐dimethyl‐1,3,2‐dioxaphosphinyl‐2‐ylamino)ethyl)‐acrylamide (DPEAA), was synthesize and characterized. Flame retardant poly(methyl methacrylate)/organic‐modified montmorillonite (PMMA‐DPEAA/OMMT) nanocomposites were prepared by in situ polymerization by incorporating methyl methacrylate, DPEAA, and OMMT. The results from X‐ray diffraction and transmission electron microscopy (TEM) showed that exfoliated PMMA‐DPEAA/OMMT nanocomposites were formed. Thermal stability and flammability properties were investigated by thermogravimetric analysis, cone calorimeter, and limiting oxygen index (LOI) tests. The synergistic effect of DPEAA and montmorillonite improved thermal stability and reduced significantly the flammability [including peak heat release rates (PHRR), total heat release, average mass loss rate, etc.]. The PHRR of PMMA‐DPEAA/OMMT was reduced by about 40% compared with pure PMMA. The LOI value of PMMA‐DPEAA/OMMT reached 27.3%. The morphology and composition of residues generated after cone calorimeter tests were investigated by scanning electronic microscopy (SEM), TEM, and energy dispersive X‐ray (EDX). The SEM and TEM images showed that a compact, dense, and uniform intumescent char was formed for PMMA‐DPEAA/OMMT nanocomposites after combustion. The results of EDX confirmed that the carbon content of the char for PMMA‐DPEAA/OMMT nanocomposites increased obviously by the synergistic effect of DPEAA and montmorillonite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Morphologies of polymer blends based on polystyrene‐b‐ polybutadiene‐b ‐poly(methyl methacrylate) (SBM) triblock copolymer were predicted, adopting the phase diagram proposed by Stadler and co‐workers for neat SBM block copolymer, and were experimentally proved using atomic force microscopy. All investigated polymer blends based on SBM triblock copolymer modified with polystyrene (PS) and/or poly(methyl methacrylate) (PMMA) homopolymers showed the expected nanostructures. For polymer blends of symmetric SBM‐1 triblock copolymer with PS homopolymer, the cylinders in cylinders core?shell morphology and the perforated lamellae morphology were obtained. Moreover, modifying the same SBM‐1 triblock copolymer with both PS and PMMA homopolymers the cylinders at cylinders morphology was reached. The predictions for morphologies of blends based on asymmetric SBM‐2 triblock copolymer were also confirmed experimentally, visualizing a spheres over spheres structure. This work presents an easy way of using PS and/or PMMA homopolymers for preparing nanostructured polymer blends based on SBM triblock copolymers with desired morphologies, similar to those of neat SBM block copolymers. © 2017 Society of Chemical Industry  相似文献   

17.
Epoxidized natural rubbers (ENRs) with epoxide levels of 10, 20, 30, 40, and 50 mol % were prepared. The ENRs were later blended with poly(methyl methacrylate) (PMMA) with various blend formulations. The mixing torque of the blends was observed. The torque increased as the PMMA contents and epoxide molar percentage increased in the ENR molecules. Furthermore, the shear stress and shear viscosity of the polymer blends in the molten state increased as the ENR content and epoxide molar percentage increased in the ENR molecules. Chemical interactions between polar groups in the ENR and PMMA molecules might be the reason for the increases in the torque, shear stress, and viscosity. All the ENR/PMMA blends exhibited shear‐thinning behavior. This was observed as a decrease in the shear viscosity with an increase in the shear rate. The power‐law index of the blends decreased as the ENR contents and epoxide molar percentage increased in the ENR molecules. However, the consistency index (or zero shear viscosity) increased as the ENR contents and epoxide molar percentage increased. A two‐phase morphology was observed with scanning electron microscopy. The small domains of the minor components were dispersed in the major phase. For the determination of blend compatibility, two distinct glass‐transition‐temperature (Tg) peaks from the tan δ/temperature curves were found. Shifts in Tg to a higher temperature for the elastomeric phase and to a lower temperature for the PMMA phase were observed. Therefore, the ENR/PMMA blends could be described as partly miscible blends. According to the thermogravimetry results, the decomposition temperatures of the blends increased as the levels of ENR and the epoxide molar percentage increased. The chemical interactions between the different phases of the blends could be the reason for the increase. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3561–3572, 2004  相似文献   

18.
The compatibilizing efficiency of three different compatibilizers in thermoplastic polyurethane/styrene‐co‐acrylonitrile (TPU/SAN) blends was investigated after their incorporation via melt‐mixing. The compatibilizers studied were poly‐ε‐caprolactone (PCL), a mixture of polystyrene‐block‐polycaprolactone (PS‐b‐PCL) and polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA), and a mixture of polyisoprene‐block‐polycaprolactone (PI‐b‐PCL) and polybutadiene‐block‐poly(methyl methacrylate) (PB‐b‐PMMA). All compatibilizers were synthesized by living anionic polymerization. Investigations of thermal and thermo‐mechanical properties performed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DTMA), respectively, were systematically classified into two groups, i.e. blends of TPU or SAN with 20 wt% of different compatibilizers (so‐called limit conditions) and TPU/SAN 25/75 blends with 5 wt% of different compatibilizers. In order to determine the compatibilizer's location, morphology of TPU/SAN 25/75 blends was studied with transmission electron microscopy (TEM). Different compatibilization activity was found for different systems. Blends compatibilized with PCL showed superior properties over the other blends. Polym. Eng. Sci. 44:838–852, 2004. © 2004 Society of Plastics Engineers.  相似文献   

19.
Several types of poly(methyl methacrylate)/poly(dimethyl siloxane) graft copolymers (PMMA‐g‐PDMS) were synthesized using macromonomer technology. Three types of PMMA‐g‐PDMS with different PDMS chain length were obtained. The effect of siloxane chain length on surface segregation of PMMA‐g‐PDMS/poly(2‐ethylhexyl acrylate‐co‐acrylic acid‐co‐vinyl acetate)[P(2EHA‐AA‐VAc)] blends was investigated. The blends of PMMA‐g‐PDMS with P(2EHA‐AA‐VAc) showed surface segregations of PDMS components. The surface enrichments of PDMS in the blends depended on the PDMS chain length, significantly. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1736–1740, 2002  相似文献   

20.
A novel method for the organic modification of a ceramic thermal conductive filler (α‐alumina) with cold plasma was developed for the preparation of elastomer thermal interface materials with high thermal conductivities and low moduli. The α‐alumina fillers were first coated with low‐molecular‐weight polydimethylsiloxane (PDMS) by solution dispersion and then treated in argon plasma for different time. The modified α‐alumina fillers were characterized with high‐resolution transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy. The results revealed that a thin PDMS film with several nanometers thick was tightly coated on the surface of the alumina filler after plasma treatment, and this thin film could not be removed by 48 h of Soxhlet extraction with n‐hexane at 120°C. Plasma modification of the alumina could dramatically weaken the strength of the filler–filler networks and, thus, remarkably reduce the modulus of the alumina‐filled silicone rubber composites but did not affect the thermal conductivity of the composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号