首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gas holdup, ?, and volumetric mass transfer coefficient, kLa, were measured in a 0.051 m diameter glass column with ethanol as the liquid phase and cobalt catalyst as the solid phase in concentrations of 1.0 and 3.8 vol.‐%. The superficial gas velocity U was varied in the range from 0 to 0.11 m/s, spanning both the homogeneous and heterogeneous flow regimes. Experimental results show that increasing catalyst concentration decreases the gas holdup to a significant extent. The volumetric mass transfer coefficient, kLa, closely follows the trend in gas holdup. Above a superficial gas velocity of 0.04 m/s the value of kLa/? was found to be practically independent of slurry concentration and the gas velocity U; the value of this parameter is found to be about 0.45 s–1. Our studies provide a simple method for the estimation of kLa in industrial‐size bubble column slurry reactors.  相似文献   

2.
Gas holdup in bubble columns has been investigated over a wide range of operational and geometrical parameters. A criterion has been developed for the prediction of the transitional velocity from the homogeneous to heterogeneous flow regime. Correlations for gas holdup in both regimes are developed and verified against experimental data.  相似文献   

3.
The volumetric mass transfer coefficient kLa in a 0.1 m‐diameter bubble column was studied for an air‐slurry system. A C9‐C11 n‐paraffin oil was employed as the liquid phase with fine alumina catalyst carrier particles used as the solid phase. The n‐paraffin oil had properties similar to those of the liquid phase in a commercial Fischer‐Tropsch reactor under reaction conditions. The superficial gas velocity UG was varied in the range of 0.01 to 0.8 m/s, spanning both the homogeneous and heterogeneous flow regimes. The slurry concentration ?S ranged from 0 to 0.5. The experimental results obtained show that the gas hold‐up ?G decreases with an increase in slurry concentration, with this decrease being most significant when ?S < 0.2. kLa/?G was found to be practically independent of the superficial gas velocity when UG > 0.1 m/s is taking on values predominantly between 0.4 and 0.6 s–1 when ?S = 0.1 to 0.4, and 0.29 s–1, when ?S = 0.5. This study provides a practical means for estimating the volumetric mass transfer coefficient kLa in an industrial‐size bubble column slurry reactor, with a particular focus on the Fischer‐Tropsch process as well as high gas velocities and high slurry concentrations.  相似文献   

4.
5.
H. Jin  D. Liu  S. Yang  G. He  Z. Guo  Z. Tong 《化学工程与技术》2004,27(12):1267-1272
The volumetric gas‐liquid mass transfer coefficient, kLα, for oxygen was studied by using the dynamic method in slurry bubble column reactors with high temperature and high pressure. The effects of temperature, pressure, superficial gas velocity and solids concentration on the mass transfer coefficient are systemically discussed. Experimental results show that the gas‐liquid mass transfer coefficient increases with the increase in pressure, temperature, and superficial gas velocity, and decreases with the increase in solids concentration. Moreover, kLα values in a large bubble column are slightly higher than those in a small one at certain operating conditions. According to the analysis of experimental data, an empirical correlation is obtained to calculate the values of the oxygen volumetric mass transfer coefficient for a water‐quartz sand system in two bubble columns with different diameter at high temperature and high pressure.  相似文献   

6.
鼓泡塔中非牛顿流体体系的传质研究   总被引:1,自引:0,他引:1  
本文在直径0.10 m、高1.05 m的鼓泡塔中,以羧甲基纤维素钠作为模拟介质,采用单孔喷嘴布气、孔径d_o=0.01 m,测定了该类反应器的比相界面积和容积传质系数,提出了比相界面积和传质系数的关联式。  相似文献   

7.
Bubble columns are widely used in the chemical and biochemical industries. In these reactors a gaseous phase is dispersed into a continuous liquid phase thus the rising bubble swarm induces a circulating flow field. For the dimension of these reactors the local interfacial area and the residence time of the liquid and the gaseous phase are key parameters. In this paper an Euler‐Euler approach is used to calculate the flow field in bubble columns numerically. Therefore a transport equation for the mean bubble volume based on a population balance equation approach is coupled with the balance equations for mass and momentum. The calculations are performed for three‐dimensional, instationary flow fields in cylindrical bubble columns considering the homogeneous and the heterogeneous flow regime. For the interphase mass transfer the physical absorption of the gaseous phase into the liquid is assumed. The back mixing in the gaseous and liquid phase is calculated from the local and time dependent concentration of a tracer.  相似文献   

8.
9.
气泡在热液相介质中上升时的传热与传质   总被引:8,自引:1,他引:8  
本文对气泡在热液相介质中上升时的传热与传质进行了分析,建立了数学模型,并进行了数值解,其结果可以说明气液相界面蒸发的特征。本文还通过实验对理论模型进行了验证。  相似文献   

10.
A kinetic model developed to describe flotation in a bubble column is presented. This model, developed on the basis of the theory of mass transfer in gas‐liquid flows, makes explicit in its formulation the effect of the superficial saturation of bubbles on the kinetics of flotation. The model is applied to the simulation of flotation column experiments for which the classical first‐order models, commonly used in flotation modeling, are insufficient to represent the flotation kinetics. The results of the simulations obtained under different hypotheses of simplification and compared to experimental data show that the model succeeds in representing the flotation kinetics in these cases.  相似文献   

11.
We show that application of low‐frequency vibrations, in the 50–200 Hz range, to the liquid phase of an air‐water bubble column causes significantly smaller bubbles to be generated at the distributor plate. For bubble column operation in the homogeneous flow regime, measurements of the volumetric mass transfer coefficient using the oxygen absorption technique show that the increase in the kLa values ranges from 50–100 % depending on the flow rate. It is concluded that application of low‐frequency vibration has the potential of improving the performance of bubble columns.  相似文献   

12.
The main objective of this work was to propose a new process for household fume incineration treatment: the droplet column. A feature of this upward gas‐liquid reactor which makes it original, is to use high superficial gas velocities (13 m s–1) which allow acid gas scrubbing at low energy costs. Tests were conducted to characterize the hydrodynamics, mass transfer performances, and acid gas scrubbing under various conditions of superficial gas velocity (from 10.0 to 12.0 m s–1) and superficial liquid velocity (from 9.4·10–3 to 18.9·10–3 m s–1). The following parameters characterized the hydrodynamics: pressure drops, liquid hold‐ups, and liquid residence time distribution were identified and investigated with respect to flow conditions. To characterize mass transfer in the droplet column, three parameters were determined: the gas‐liquid interfacial area (a), the liquid‐phase volumetric mass transfer coefficient (kLa) and the gas‐phase volumetric mass transfer coefficient (kGa). Gas absorption with chemical reaction methods were applied to evaluate a and kGa, while a physical absorption method was used to estimate kLa. The influence of the gas and liquid velocities on a, kLa, and kGa were investigated. Furthermore, tests were conducted to examine the utility of the droplet column for the acid gas scrubbing, of gases like hydrogen chloride (HCl) and sulfur dioxide (SO2). This is a process of high efficiency and the amount of pollutants in the cleaned air is always much lower than the regulatory European standards imposed on household waste incinerators.  相似文献   

13.
The relative effects of the size of gas sparger orifices and properties of solid particles on gas‐liquid mass transfer are not yet fully understood. Here, the impact of sparger orifice sizes, solid particle shapes, and their loading amounts in a bubble column reactor on the absorption of oxygen in tap water was investigated. Their influence on the mass transfer coefficient and bubble hydrodynamic parameters was evaluated. The results show that the addition of solid particles can have both positive and negative effects on hydrodynamics and mass transfer, depending on the orifice size of the gas sparger. The introduction of ring‐shaped solid particles can improve the mass transfer rate by up to 28 % without requiring any significant additional power.  相似文献   

14.
The impact of sparger design and surfactant addition on the oxygen transfer rate in a bubble column was examined. Additionally, measurements were also made of the holdup and bubble size distribution, allowing both the interfacial area for mass transfer and the liquid film mass transfer coefficient to be determined for a range of industrially relevant superficial velocities. It was found that for the velocity range examined changes in the superficial velocity had a minimal impact on the observed value of liquid film mass transfer coefficient. In contrast, addition of both hydrophilic and hydrophobic surface‐active compounds led to an approximately threefold reduction in liquid film mass transfer coefficient.  相似文献   

15.
16.
This study aims at applying artificial neural network (ANN) modeling approach in designing ozone bubble columns. Three multi-layer perceptron (MLP) ANN models were developed to predict the overall mass transfer coefficient (kLa, s?1), the gas hold-up (? G , dimensionless), and the Sauter mean bubble diameter (dS , m) in different ozone bubble columns using simple inputs such as bubble column's geometry and operating conditions. The obtained results showed excellent prediction of kLa, ? G , and dS values as the coefficient of multiple determination (R2 ) values for all ANN models exceeded 0.98. The ANN models were then used to determine the local mass transfer coefficient (kL , m.s?1). A very good agreement between the modeled and the measured kL values was observed (R2 ?=?0.85).  相似文献   

17.
Computational Fluid Dynamics (CFD) is used to compare the hydrodynamics and mass transfer of an internal airlift reactor with that of a bubble column reactor, operating with an air/water system in the homogeneous bubble flow regime. The liquid circulation velocities are significantly higher in the airlift configuration than in bubble columns, leading to significantly lower gas holdups. Within the riser of the airlift, the gas and liquid phases are virtually in plug flow, whereas in bubble columns the gas and liquid phases follow parabolic velocity distributions. When compared at the same superficial gas velocity, the volumetric mass transfer coefficient, kLa, for an airlift is significantly lower than that for a bubble column. However, when the results are compared at the same values of gas holdup, the values of kLa are practically identical.  相似文献   

18.
A transient back flow cell model was used to model the hydrodynamic behaviour of an impinging-jet ozone bubble column. A steady-state back flow cell model was developed to analyze the dissolved ozone concentration profiles measured in the bubble column. The column-average overall mass transfer coefficient, kLa (s?1), was found to be dependent on the superficial gas and liquid velocities, uG (m.s?1) and uL (m.s?1), respectively, as follows: kLa?=?55.58 · uG 1.26· uL 0.08 . The specific interfacial area, a (m?1), was determined as a = 3.61 × 103 · uG 0.902 · uL ?0.038 by measuring the gas hold-up (ε G?=?4.67 · uG 1.11 · uL ?0.05 ) and Sauter mean diameter, dS (mm), of the bubbles (dS?=?7.78 · uG 0.207 · uL ? 0.008 ). The local mass transfer coefficient, kL (m.s?1), was then determined to be: kL?=?15.40 · uG 0.354 · uL 0.118 .  相似文献   

19.
abstract The volumetric mass transfer coefficient kLa of gases (H2, CO, CO2) and mass transfer coefficient kL on liquid par-affin side were studied using the dynamic absorption method in slurry bubble ...  相似文献   

20.
H. Jin  Y. Qin  S. Yang  G. He  Z. Guo 《化学工程与技术》2013,36(10):1721-1728
The effects of operating conditions on radial variation of gas holdups, bubble swarm rising velocity, and Sauter mean diameter were investigated in a bubble column reactor under elevated pressures using a conductivity probe method. Air served as gas phase and tap water as liquid phase with varying gas velocity and pressure. All three parameters increased constantly with higher superficial gas velocity. Maximum holdup, velocity, and Sauter mean diameter were found at the center of the cross section. Two different cases for Sauter mean diameter distribution were observed. The gas holdups increase continuously with higher system pressure, but decrease for bubble swarm rising velocity and Sauter mean diameter. According to experimental results, an empirical correlation of the gas holdup profiles is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号