首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new silicone containing macromonomer, 4‐(methacrylamido) phenoxy polymethylhydrosiloxane (4‐MPMHS) with a vinyl group, was successfully synthesized. Then poly (silicone‐co‐styrene‐co‐butylacrylate) with montmorillonite, P (Si‐co‐St‐co‐BA) with MMT nanocomposite emulsion was prepared by in situ intercalative emulsion polymerization of styrene (St), butyl acrylate (BA), and 4‐MPMHS, in the presence of organic modified montmorillonite (OMMT) with different OMMT contents (0, 0.5, 1.0, 1.5, and 2 wt %). Potassium persulphate (KPS) was used as an initiator and sodium lauryl sulfoacetate (SLSA) and nonyl phenol ethylene oxide—40 U (NP‐40) were used as anionic and nonionic emulsifiers, respectively. The resulting macromonomer was characterized by elemental analysis, Fourier transformer infrared (FT‐IR), proton (1H NMR), and carbon (13C NMR) nuclear magnetic resonance spectroscopes. The OMMT was characterized by FT‐IR and X‐ray diffraction (XRD). The nanocomposite emulsions were characterized by using Fourier Transform infrared spectroscopy (FT‐IR), laser light scattering, and surface tension method. Thermal properties of the copolymers were studied using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) and then the effects of OMMT percent on the water absorption ratio and drying speed were examined. Results showed that OMMT could improve the properties of emulsion. In other words, the properties of nanocomposite emulsions were better when compared with those of the silicone‐acrylate emulsion. The property of nanocomposite emulsion containing 1 wt % OMMT was the best one, and the following advantages were obtained: smaller particle size, faster drying speed, smaller surface tension, and improved water resistance by the incorporation of OMMT. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
A new silicone containing acrylic monomer, methacryloxyethyl polymethylhydrosiloxane ether (MEPMHSE), based on polymethylhydrosiloxane (PMHS) and 2-hydroxyethyl methacrylate (HEMA) has been synthesized for formulation of nanocomposite emulsion. Then Poly (silicone-co-acrylate)/montmorillonite (PSAM)/nanocomposite emulsion were prepared by in situ intercalative emulsion polymerization of methyl methacrylate (MMA), butyl acrylate (BA), methacrylic acid (MAA) and MEPMHSE, in the presence of organic modified montmorillonite (OMMT) with different OMMT contents (0, 0.5, 1.0, 1.5 and 2 wt%) and auxiliary agents in the presence of potassium persulphate (KPS) as initiator. Alkylphenol ethersulphate and Arkupal N-300 were used as anionic and non-ionic emulsifiers, respectively. The resulting monomer was characterized by Fourier transformer infrared spectroscopy (FTIR), proton (1H NMR), and carbon (13C NMR) nuclear magnetic resonance spectroscopes. The OMMT was characterized by FTIR and X-ray diffraction (XRD). The nanocomposite emulsions were characterized by using Fourier transform infrared spectroscopy (FTIR), laser light scattering and surface tension. Thermal properties of the copolymers were studied by using thermogravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA) and then the effects of OMMT percent on the water absorption ratio and drying speed were examined. Results showed that OMMT could improve the properties of emulsion, in other words, the properties of nanocomposite emulsion were better when compared with those of the silicone–acrylate emulsion. The property of nanocomposite emulsion containing 1 wt% OMMT was the best one, and the following advantages were obtained: smaller particle size, faster drying speed, smaller surface tension, and improved resistant water by the incorporation of OMMT.  相似文献   

3.
Emulsion paper–plastic nanometer laminating adhesive of 1.5% organic montmorillonite (OMMT) was prepared by OMMT intercalating polyacrylate‐system materials. In this article, it was discovered that nanometer‐laminating adhesive has better adhesion, smaller latex particles size, lower surface tension, and higher drying speed than general laminating adhesive. The rheologic behavior of the emulsion was discussed and it was shown that the value of n (the flow index of emulsion) was reduced and viscous flow activation energy (Ea) was increased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 872–877, 2005  相似文献   

4.
We successfully synthesized an exfoliated styrene–butadiene–styrene triblock copolymer (SBS)/montmorillonite nanocomposite by anionic polymerization. Gel permeation chromatography showed that the introduction of organophilic montmorillonite (OMMT) resulted in a small high‐molecular‐weight fraction of SBS in the composites, leading to a slight increase in the weight‐average and number‐average molecular weights as well as the polydispersity index. The results from 1H‐NMR revealed that the introduction of OMMT almost did not affect the microstructure of the copolymer when the OMMT concentration was lower than 4 wt %. Transmission electron microscopy and X‐ray diffraction showed a completely exfoliated nanocomposite, in which both polystyrene and polybutadiene blocks entered the OMMT galleries, leading to the dispersion of OMMT layers on a nanoscale. The exfoliated nanocomposite exhibited higher thermal stability, glass‐transition temperature, elongation at break, and storage modulus than pure SBS. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

5.
Flame‐retardant methyl vinyl silicone rubber (MVMQ)/montmorillonite nanocomposites were prepared by solution intercalation method, using magnesium hydroxide (MH) and red phosphorus (RP) as synergistic flame‐retardant additives, and aero silica (SiO2) as synergistic reinforcement filler. The morphologies of the flame‐retardant MVMQ/montmorillonite nanocomposites were characterized by environmental scanning electron microscopy (ESEM), and the interlayer spacings were determined by small‐angle X‐ray scattering (SAXS). In addition to mechanical measurements and limited oxygen index (LOI) test, thermal properties were tested by thermogravimetric analysis (TGA). The decomposition temperature of the nanocomposite that contained 1 wt % montmorillonite can be higher (129°C) than that of MVMQ as basal polymer matrix when 5% weight loss was selected as measuring point. This kind of silicone rubber nanocomposite is a promising flame‐retardant polymeric material. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3275–3280, 2006  相似文献   

6.
N,N‐Di(2‐hydroxyethyl)‐N‐dodecyl‐N‐methyl ammonium chloride was used as intercalation agent to treat Na+‐montmorillonite and form a type of organic montmorillonite (OMMT). Hyperbranched OMMT (HOMMT) was prepared by condensation reaction between OMMT and the monomer we synthesized. It was then used in the preparation of high‐temperature vulcanizated silicone rubber (HTV‐SR)/HOMMT nanocomposite. Different types of HTV‐SR/HOMMT nanocomposites were prepared with different amounts of HOMMT and compared with the composites directly incorporated with OMMT. Tensile properties such as tensile strength, elongation at break, permanent distortion, and shore A hardness were researched and compared. A combination of Fourier transform infrared spectroscopy, wide angle X‐ray diffraction, and transmission electron microscopy studies showed that HTV‐SR/HOMMT composites were on the nanometer scale, and the structure of HTV‐SR was not interfered by the presence of HOMMT. Results showed that the tensile properties of HTV‐SR/HOMMT systems were better than that of the HTV‐SR/HOMMT and HTV‐SR. This was probably due to the surface effect of the exfoliated silicate layers and anchor effect of HOMMT in the SR matrix. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
N,N‐Di(2‐hydroxyethyl)‐N‐dodecyl‐N‐methyl ammonium chloride was used as an intercalation agent to treat Na+‐montmorillonite and form a novel type of organic montmorillonite (OMMT). An OMMT master batch (OMMT‐MB) was prepared by solution intercalation and was used in the preparation of high‐temperature‐vulcanized silicone rubber (HTV‐SR)/OMMT‐MB nanocomposites. The properties, such as the tensile and thermal stability, were researched and compared with those of composites directly incorporated with OMMT or aerosilica. A combination of Fourier transform infrared spectroscopy, wide‐angle X‐ray diffraction, and transmission electron microscopy studies showed that HTV‐SR/OMMT‐MB composites were on the nanometer scale, and their structure was somewhat hindered by the presence of OMMT. The results showed that the tensile properties of HTV‐SR/OMMT‐MB and HTV‐SR/OMMT systems were better than those of pure HTV‐SR. Compared with those of HTV‐SR/OMMT‐20%, the tensile strength and elongation at break of HTV‐SR/OMMT‐MB‐20% were improved about 1.5 and 0.9 times, respectively. This was probably due to the nanoeffect of the exfoliated silicate layers. Moreover, the tensile strength of HTV‐SR/OMMT‐MB‐20% was nearly equal to that of HTV‐SR/aerosilica‐20%, and the elongation at break even showed much improvement. Additionally, the thermal degradation center temperature of the HTV‐SR/OMMT‐MB‐20% nanocomposite was increased by 30°C compared with that of the HTV‐SR/OMMT‐20% composite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Poly(butyl acrylate‐co‐methyl methacrylate)‐montmorillonite (MMT) waterborne nanocomposites were successfully synthesized by semibatch emulsion polymerization. The syntheses of the nanocomposites were performed in presence of sodium montmorillonite (Na‐MMT) and organically modified montmorillonite (O‐MMT). O‐MMT was used directly after the modification of Na‐MMT with dimethyl dioctadecyl ammonium chloride. Both Na‐MMT and O‐MMT were sonified to obtain nanocomposites with 47 wt % solids and 3 wt % Na‐MMT or O‐MMT content. Average particle sizes of Na‐MMT nanocomposites were measured as 110–150 nm while O‐MMT nanocomposites were measured as 200–350 nm. Both Na‐MMT and O‐MMT increased thermal, mechanical, and barrier properties (water vapor and oxygen permeability) of the pristine copolymer explicitly. X‐ray diffraction and transmission electron microscope studies show that exfoliated morphology was obtained. The gloss values of O‐MMT nanocomposites were found to be higher than that of the pristine copolymer. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42373.  相似文献   

9.
A novel polymer‐nanoclay hybrid nanocomposite based on polyvinyl acetate (PVAc)‐organophilic montmorillonite (OMMT) has been reported via an in situ intercalated polymerization technique. The hybrid material was synthesized by one‐step emulsion polymerization of vinyl acetate in the presence of OMMT using polyvinyl alcohol as the stabilizing agent. The intercalated polymerization was characterized by X‐ray diffraction (XRD). The XRD patterns show that the interlayer spacing of OMMT after polymerization increased from 2.64 to 3.78 nm, indicating that the large macromolecular chain of PVAc was formed in the OMMT interlayer space. The Fourier transform infrared spectrum showed the characteristic absorption of PVAc in the OMMT particles separated from the nanocomposite, and the position of peaks shifted to high wave numbers. This showed that there was an interaction between PVAc and OMMT nanoparticles. A two‐fold blend composed of PVAc‐nano‐OMMT/PP was prepared by the melt‐blending technique. XRD and transmission electron microscopy images of the PVAc‐nano‐OMMT/PP composite further confirmed the formation of a partially delaminated nanocomposite structure. Thermogravimetry results showed that the thermal stability of PVAc‐nano‐OMMT/PP was greater than that of either polypropylene (PP) or Nano‐OMMT/PP blend. PVAc‐nano‐OMMT/PP had better toughness, as the mass fraction of OMMT was 5 wt %. The flame retardancy of PP, Nano‐OMMT/PP, and PVAc‐nano‐OMMT/PP composites was also studied. According to the limiting oxygen index (LOI) data and Cone calorimeter test, the addition of PVAc‐OMMT resulted in higher LOI and lower heat release rate, effective heat of combustion, smoke release course, and better flame retardancy and barrier properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Natural rubber (NR) vulcanizates exhibit good mechanical properties compared to vulcanizates of synthetic rubbers. Incorporation of a conventional filler at higher loadings to NR enhances its modulus, while reduction in tensile strength and elongation. This paper presents a new strategy for development of a NR‐clay nanocomposite with enhanced mechanical properties by incorporation of lower loadings (2–8 phr) of cetyl trimethyl ammonium bromide modified montmorillonite clay (OMMT‐C) under acid‐free environment. The effect of OMMT‐C loading on cure characteristics, rubber‐filler interactions, crosslink density, dynamic mechanical thermal properties, and mechanical properties were evaluated. Incorporation of OMMT‐C accelerated the vulcanization process and enhanced mechanical properties. X‐ray diffraction analysis and scanning electron microscopy images revealed that the formation of intercalated clay structures at lower OMMT‐C loadings, and clay aggregates at higher loadings. A nanocomposite at OMMT‐C loading of 2 phr exhibited the best balanced mechanical properties, and was associated with highest crosslink density and rubber–filler interactions. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46502.  相似文献   

11.
Hybrid latices of poly(styrene‐co‐butyl acrylate) were synthesized via in situ miniemulsion polymerization in the presence of 3 and 6 wt % organically modified montmorillonite (OMMT). Three different ammonium salts: cetyl trimethyl ammonium chloride (CTAC), alkyl dimethyl benzyl ammonium chloride (Dodigen), and distearyl dimethyl ammonium chloride (Praepagen), were investigated as organic modifiers. Increased affinity for organic liquids was observed after organic modification of the MMT. Stable hybrid latices were obtained even though miniemulsion stability was disturbed to some extent by the presence of the OMMTs during the synthesis. Highly intercalated and exfoliated polymer‐MMT nanocomposites films were produced with good MMT dispersion throughout the polymeric matrix. Materials containing MMT modified with the 16 carbons alkyl chain salt (CTAC) resulted in the largest increments of storage modulus, indicating that single chain quaternary salts provide higher increments on mechanical properties. Films presenting exfoliated structure resulted in the largest increments in the onset temperature of decomposition. For the range of OMMT loading studied, the nanocomposite structure influenced more significantly the thermal stability properties of the hybrid material than did the OMMT loading. The film containing 3 wt % MMT modified with the two 18 carbons alkyl chains salt (Praepagen) provided the highest increment of onset temperature of decomposition. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Organic–inorganic hybrid poly(styrene‐co‐butyl acrylate)/organically modified montmorillonite (PSBA/organo‐MMT) latex particles have been prepared by in situ emulsion polymerization. The effects of modifier variety and the level of organo‐MMT have been investigated on the basis of the characteristics and mechanical properties of the resulting hybrid emulsion polymers. Although the more hydrophilic intercalated organic modifiers increased the latex particle size, the hydrophobic ones decreased the particle size. A more heterogeneous copolymer chain intercalation was seen by widespread XRD reflection as the organo‐MMT (organoclay) level increases. The tapping mode atomic force microscopy (AFM) and transmission electron microscopy (TEM) were used to determine the dispersion state of organoclay particles inside the nanocomposite copolymer films. Dynamic mechanical thermal analysis (DMTA) showed that adding the organoclay to the copolymer decreased the maximum loss tangent (tanδ) value and caused the shift to a lower temperature. Interestingly, the incorporation of organoclay decreased the glass storage modulus of the copolymer, while increased the rubbery storage modulus to some extent. In addition, a standard indenter for the nanoscratching of copolymer nanocomposite films was used under low applied loads of 150 and 250 μN. The nanoscratch results showed that incorporation of a 3 wt % hydrophobic organoclay, e.g., Closite15A, in the copolymer matrix enhanced considerably the near‐surface hardness and grooving resistance of the nanocomposite film at room temperature. In fact, copolymer nanocomposite films with higher near‐surface hardness and tanδ curve broadening exhibited more nanoscratch resistance through a specific variety of viscoelastic deformation, which did not create a bigger groove. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
Thermal, mechanical and morphological properties of surface‐modified montmorillonite (OMMT)‐reinforced Viton rubber nanocomposites were studied. The surface of montmorillonite was modified with a column chromatography technique using quaternary long‐chain ammonium salt as an intercalant, which resulted in uniform exchange of ions between montmorillonite and the ion‐exchange resin, and increased the d‐spacing to 31.5 Å. This improved d‐spacing was due to the use of an ion‐exchange column of sufficient length (35 cm) and diameter (5 cm) with maximum retention time for exchange of ions. The Viton nanocomposites reinforced with OMMT (3–12 wt%) were prepared using a two‐roll mill and moulded in a compression moulding machine. Tensile strength increased 3.17 times and elongation at break from 500 to 600% for 9 wt% loading of OMMT in comparison to pristine Viton rubber. Thermogravimetric analysis revealed that the presence of OMMT greatly improved the thermal stability. This improvement in properties with increasing OMMT loading was due to insertion of rubber chains between the OMMT plates with good wetting ability. Overall, at an optimum OMMT loading of 9 wt%, the properties of the Viton rubber nanocomposites improved, and subsequently worsened at 12 wt% due to agglomeration of OMMT as revealed by scanning electron microscopy and atomic force microscopy images. © 2013 Society of Chemical Industry  相似文献   

14.
The aim of this work was to study the effect of functionalized single‐walled carbon nanotubes (f‐SWCNTs) on the microstructure of PP‐g‐MA/organic modified montmorillonite (OMMT)/f‐SWCNTs ternary nanocomposite. Pristine SWCNTs were chemically modified by maleic anhydride to improve the interaction between PP‐g‐MA and nanotubes. The dispersion states of OMMT in the different nanocomposites were investigated by wide angle X‐ray diffraction. The morphologies of the nanocomposites were characterized by scanning electron microscopy. Crystallization behaviors of nanocomposites were studied through differential scanning calorimetry and polarizing optical microscopy. Different than the PP‐g‐MA/OMMT binary nanocomposite, in which the OMMT is mainly in an exfoliated state, the ternary PP‐g‐MA/OMMT/f‐SWCNTs nanocomposite exhibits mostly intercalated OMMT. Furthermore, in the ternary nanocomposite, the crystallization of polymer is mainly induced by f‐SWCNTs rather than by OMMT. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Poly(butyl acrylate‐co‐methyl methacrylate) (BA‐co‐MMA) nanocomposite latexes were synthesized in the presence of sodium montmorillonite (Na‐MMT) and cellulose nanocrystal (CNC) as fillers. Nanocomposite preparation with 3 wt% Na‐MMT based upon the total monomer amount was conducted by semi‐batch emulsion polymerization. Furthermore, direct blending of neat copolymer latex with Na‐MMT was performed for comparison. CNC/BA‐co‐MMA nanocomposites were obtained via blending process with varying CNC content (1, 2, and 3 wt %). Good dispersion of both Na‐MMT and CNC within the copolymer matrix was achieved as demonstrated by X‐ray diffraction and transmission electron microscope. Particle size of the nanocomposite latexes was around 120 nm. Thermal, mechanical, and barrier properties of the copolymer showed great improvement with the addition of both Na‐MMT and CNC. CNC nanocomposites displayed enhanced properties with increasing CNC level. Tensile strength of copolymer latex with 3 wt% CNC reached 262.5% of the pristine latex, while tensile strength of Na‐MMT nanocomposite at the same content was 187.5% of the pristine latex. POLYM. ENG. SCI., 55:2922–2928, 2015. © 2015 Society of Plastics Engineers  相似文献   

16.
Surface properties (morphology, hardness) of transparent colorless epoxy‐based organic–inorganic nanocomposite coatings were investigated by atomic force microscopy, optical and scanning electron microscopy, nanoindentation, and the Persoz pendulum test. Friction and wear coefficients were obtained from tribological experiments. The influence of mechanical properties and the size, shape, and concentration of additives (colloidal silica particles and montmorillonite sheets) on the measured surface characteristics are discussed. It was found that the highest surface hardness (assigned by nanoindentation, pendulum test or expressed as the scratch resistance) exhibited materials with the glass‐transition temperature close to 20°C. Microcopy techniques revealed that surface morphology is influenced by both types of admixtures: on the nanometer scale by colloidal silica particles and on micrometer scale by montmorillonite platelets. Already 1 wt % of montmorillonite increased friction coefficients and wear resistance without distinctive changes of tensile properties. However, the addition of ? 20 wt. % of silica nanoparticles was necessary for the increase of wear and scratch resistances. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5763–5774, 2006  相似文献   

17.
Flame‐retardant properties of nylon 6/organically modified montmorillonite (OMMT) thin films, fibers, and fabrics were investigated to determine the efficacy of condensed‐phase flame‐retardant mechanism in relation to montmorillonite concentration, sample geometry, and flame test conditions. Horizontal flame spread conducted on thin films revealed no significant difference in burning behavior between nylon 6 and nanocomposites with 5 wt% OMMT. However, with a higher concentration level of 8–10 wt% OMMT, the films burned without any dripping. The flame spread rate was reduced by 30–40% as compared with nylon 6 films. Cone calorimeter study on nanocomposite films showed that the peak heat release rate of nylon 6 was reduced by 65–67% with 8–10 wt% OMMT. Undrawn nanocomposite monofilaments with 10 wt% OMMT burned slowly and steadily in Bunsen flame without dripping. In cone calorimeter, nanocomposite fabrics with 8 wt% OMMT showed reduced heat release rate and mass loss rate compared to nylon 6 fabrics with increase in fabric tightness factor. The mass loss rate was about 40–60% less when compared with nylon 6 fabrics. The fabric char structure remained intact after burning. This demonstrated the interdependence of fabric tightness factor, OMMT concentration, and source of heat flux in forming a protective char and affecting the flammability of fabrics. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

18.
Functional polydimethylsiloxanes containing vinyl groups (Vi‐PDMS) were used for silicone‐based organic polymers in composites and adhesive formulations. Poly(butyl acrylate/methyl methacrylate/vinyl silicone oil)/casein–caprolactam [P(BA‐MMA‐Vi‐PDMS)/CA‐CPL] nanoparticles were prepared via emulsifier‐free polymerization. The well‐defined core–shell structure of P(BA‐MMA‐Vi‐PDMS)/CA‐CPL nanoparticles was verified by transmission electron microscopy. The results of scanning electron microscopy and contact angle measurements proved that the as‐obtained coatings exhibited porous and hydrophobic properties, which were helpful for superior water vapor permeability. By comparing the appearance of the coatings before and after adhesion analysis, the excellent adhesion strength was proved to be dominated by Vi‐PDMS. The relationship between interface morphology and properties of the resultant coatings was investigated in detail. The nucleation mechanism for this soap‐free emulsion synthesis was also proposed accordingly. These results could help in designing coatings with better surface properties and wider application. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46501.  相似文献   

19.
Acrylic copolymer/montmorillonite (MMT) nanocomposites for warp sizing were prepared in the presence of Na+‐MMT by the in situ intercalative polymerization of acrylic acid, acrylamide, and methyl acrylate in water solution. The properties of the solution and cast film were tested according to an application in sizing process of the nanocomposite size with various MMT contents. The results indicate that, for an exfoliated structure corresponding to the MMT content increasing to 7 wt %, the performance parameters of solution viscosity, glass‐transition temperature, and tensile strength of the film increased and the moisture sorption, abrasion loss, and elongation at break of the film decreased. When the intercalated structure of MMT was 9 wt %, the gathered MMT layers acted as a common inorganic filler in the copolymer matrix, with limited contribution to the properties of the composite. The adhesion work of the nanocomposite solution was calculated by use of the Young–Dupre relation, which showed maximum values at an MMT content of 3 wt % on the surfaces of both the polyester and cellulose films. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Star‐shaped and linear block thermoplastic poly(styrene‐b‐butadiene) copolymer (SBS)/organophilic montmorillonite clays (OMMT) were prepared by a solution approach. The intercalation spacing in the nanocomposites and the degree of dispersion of nanocomposites were investigated by X‐ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The mechanical properties, dynamic mechanical properties, and thermal stability of these nanocomposites were determined. Results showed that SBS chains were well intercalated into the clay galleries and an intercalated nanocomposite was obtained. The mechanical strength of nanocomposites with the star‐shaped SBS/OMMT were significantly increased. The addition of OMMT also gave an increase of the elongation, the dynamic storage modulus, the dynamic loss modulus, and the thermal stability of nanocomposites. The increase of the elongation of nanocomposites indicates that SBS has retained good elasticity. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3430–3434, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号