首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study concerns the living cationic polymerization of two vinyl ethers (VEs) having pendant glucose residues, in which the hydroxyl groups are protected by acetyl and isopropylidene functions. Living cationic polymerization of VE having an acetyl‐protected glucose was achieved by employing an initiating system consisting of the CF3COOH adduct of isobutyl VE (IBVE) and ethylaluminium dichloride in the presence of an added base at 0 °C. In contrast, the use of the HCl adduct of IBVE in conjunction with zinc iodide at ?15 °C was more suitable for the controlled polymerization of VE having an isopropylidene‐protected glucose. Polymers obtained under these reaction conditions had narrow molecular weight distributions (Mw/Mn ~ 1.1) and controlled molecular weights. © 2001 Society of Chemical Industry  相似文献   

2.
3.
Ethynedithiol‐based polyeneoligosulfides have been synthesized in 96% yield by the reaction of sodium acetylides (HC?CNa, NaC?CSNa) and elemental sulfur through the Na? Csp bond in liquid ammonia with the following spontaneous polymerization of ethynedithiols (HSC?CSH) formed by the hydrolysis. The polyeneoligosulfides synthesized are brown powders (up to 77% sulfur content, mp 128–184°C), partially soluble in organic solvents. They are high‐resistance semiconductors (10?13 to 10?14 S cm?1), possess paramagnetic (1017 to 1018 spin g?1) and redox properties. The oligosulfides obtained, being redox systems capable of reversible redox processes, provide high values of discharge capacity (345–720 mA h g?1) of rechargeable lithium‐sulfur batteries. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
A sulfur/poly(acrylonitrile)–PAN/acetylene black–AB composite, comprising sulfur and PAN encapsulated in the pores of AB was prepared by a solution‐based technique with dimethyl sulfoxide as the solvent. The composite was characterized by TGA, X‐ray diffraction, FTIR, Raman, SEM, TEM, and BET studies. The composite exhibited a high discharge capacity of 1330 mAh/g in the first cycle. The AB additive plays multiple roles in the composite, acting as a conducting matrix for electron transport and as a porous framework that adsorbs and retains electrolyte. The presence of PAN along with the porous carbon matrix in the composite provides the necessary resilience to absorb strains due to volume expansion during cycling. The observed improved performance of the composite is primarily attributed to the small size and homogeneous distribution of sulfur in the composite. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46598.  相似文献   

5.
Novel dibenzylpiperidinium salts with nonnucleophilic anions (DBPi‐SbF6, DBPi‐PF6) have been prepared as latent cationic initiators. Utility of these salts in the photo and thermal‐induced cationic polymerizations of epoxide and vinyl ether monomer systems has been studied. The new initiator, DBPi‐SbF6 showed good solubility, high reactivity, and high thermal latency for polymerizations of epoxide and vinyl ether monomers with only 1 wt % of concentration. Cationic polymerization of vinyl ether monomer was significantly faster than epoxide monomer by the synthesized initiators. This article describes the synthesis, characterization, and activity of novel initiators. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
We report a novel strategy for preparing epoxy thermosetting systems with low shrinkage and improved flexibility and degradability. Diglycidyl ether of bisphenol A (DGEBA) resin was cured with different proportions of hydroxyl‐terminated hyperbranched polymer (HBP), using ytterbium triflate as a cationic initiator. The curing process was studied using differential scanning calorimetry and thermomechanical analysis. Characterization of the resulting materials was evaluated using DSC, thermogravimetric analysis, and dynamic mechanical thermal analysis, and the fracture surface was studied using scanning electron microscopy (SEM). When DGEBA is modified with HBP, it shows a homogeneous morphology and the HBP is incorporated chemically into the network, because hydroxyl groups can react with epoxides under cationic conditions. Higher proportions of HBP reduce the glass transition temperature (Tg) and thermal stability and increase the flexibility. When the proportion of HBP in the curing mixture is increased, the degree of shrinkage is reduced significantly and expansion can be observed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Recent developments in the polymerizations of elemental sulfur (S8) to prepare high sulfur content polymers are reviewed. While the homopolymerization of S8 via ring-opening processes to prepare high molar mass polymeric sulfur has long been known, this form of polymeric sulfur is chemically unstable and depolymerizes back to S8. In the current report, we discuss the background into the production of sulfur via petroleum refining and the challenges associated with utilizing S8 as a chemical reagent for materials synthesis. To circumvent these long standing challenges in working with sulfur, the use of S8 as a reaction medium and comonomer in a process termed, inverse vulcanization, was developed to prepare chemically stable and processable sulfur copolymers. Furthermore, access to polymeric materials with a very high content of sulfur–sulfur (SS) bonds enabled for the first time the creation of materials with useful (electro)chemical and optical properties which are reviewed for use in Li–S batteries, IR imaging technology and self-healing materials.  相似文献   

8.
A series of silicon‐containing (vinyl ether)–(allyl ether) hybrid monomers used in nano‐imprint lithography resists were synthesized and subjected to photo‐initiated polymerization. The surface energies of the monomers and the resulting polymer films were then investigated. The surface energies of the monomers were very low at less than 15 mJ m–2. The photo‐curing behaviors of the five hybrid monomers were investigated using real‐time Fourier transform infrared spectroscopy. The monomers were sequentially initiated with cationic (PAG201) and mixed (cationic initiator PAG201, radical initiator ITX or TPO) initiators. The vinyl ether double bond polymerized both rapidly and completely, whereas the allyl ether double bond remained when PAG201 was used as the photo‐initiator and polymerized completely with mixed initiators. The different double bonds of the silicon‐containing (vinyl ether)–(allyl ether) hybrid monomer increased the efficiency of the polymerization and overcame the intrinsic limitations of the free radical and cationic polymerization processes, including strong oxygen inhibition, large volume shrinkage and high humidity sensitivity. The five monomers with low viscosity, low surface energy, good thermal stability and good photo‐polymerization properties were suitable for nano‐imprint photoresists. © 2013 Society of Chemical Industry  相似文献   

9.
N‐Methyleneamines, formed by treating 1,3,5‐trimethylhexahydro‐1,3,5‐triazines with Lewis acids, have been shown to be capable initiators in the cationic polymerization of tert‐butyl vinyl ether, yielding polymers with amine functionality at the chain ends. Previous work was limited to titanium(IV) chloride (TiCl4) as the Lewis acid in dichloromethane solvent at 0 °C (with resulting polymers possessing relatively broad polydispersity index (PDI) values near 2), while this contribution details the effect of reaction parameters on the polymeric products; specifically, the role of temperature, solvent, Lewis acid and additives. Ultimately, performing the polymerization at ?78 °C in dichloromethane with TiCl4 as the Lewis acid and tetra‐n‐butylammonium chloride (nBu4NCl) as the additive afforded the best control over the system, with polymers formed possessing low PDI values (<1.2). Dramatic changes in number‐average molecular weight and PDI were observed in polymers formed by initiating systems of Lewis acid‐induced N‐methyleneamines, with temperature, solvent, Lewis acid and additives all playing a role. By varying single parameters, optimization of the system was achieved. Copyright © 2009 Society of Chemical Industry  相似文献   

10.
Polymeric allyl pyridinium salts were synthesized from styrene and 4‐vinyl pyridine copolymers by quaternization and counteranion exchange reactions. The initiation capability of these copolymers, in conjunction with a photochemical free radical source such as benzoin, via an addition –fragmentation mechanism in the cationic polymerization of cyclohexene oxide is investigated. © 2001 Society of Chemical Industry  相似文献   

11.
Binder‐free LiFePO4–carbon nanofiber (CNF)–multiwalled carbon nanotube (MWCNT) composites were prepared by electrospinning and thermal treatment to form a freestanding conductive web that could be used directly as a battery cathode without addition of a conductive material and polymer binder. The thermal decomposition behavior of the electrospun LiFePO4 precursor–polyacrylonitrile (PAN) and LiFePO4 precursor–PAN–MWCNT composites before and after stabilization were studied with thermogravimetric analysis (TGA)/differential scanning calorimetry and TGA/differential thermal analysis, respectively. The structure, morphology, and carbon content of the LiFePO4–CNF and LiFePO4–CNF–MWCNT composites were determined by X‐ray diffraction, high‐resolution transmission electron microscopy, Raman spectroscopy, scanning electron microscopy, and elemental analysis. The electrochemical properties of the LiFePO4–CNF and LiFePO4–CNF–MWCNT composite cathodes were measured by charge–discharge tests and electrochemical impedance spectroscopy. The synthesized composites with MWCNTs exhibited better rate performances and more stable cycle performances than the LiFePO4–CNF composites; this was due to the increase in electron transfer and lithium‐ion diffusion within the composites loaded with MWCNTs. The composites containing 0.15 wt % MWCNTs delivered a proper initial discharge capacity of 156.7 mA h g?1 at 0.5 C rate and a stable cycle ability on the basis of the weight of the active material, LiFePO4. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43001.  相似文献   

12.
Organic–inorganic coating polypropylene separators were developed by introducing SiO2 nanoparticles through sol–gel process, where polydopamine was used as an intermediate layer. Scanning electron microscopy results showed the coating layers have highly porous structure, which was beneficial for liquid electrolyte uptake. Compared with pristine polypropylene separator, the ceramic separators showed improved thermal stability, higher ionic conductivity, and lower interfacial impedance. The cells employing the ceramic separators delivers excellent discharge capacity (retention = 75%) and coulombic efficiency up to 98% at 2 °C rate after 100 cycles. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46478.  相似文献   

13.
New epoxy thermosets with improved flexibility were prepared by chemical modification of bisphenol A diglycidyl ether (DGEBA) with hyperbranched polymers (HBPs). Hydroxyl‐ended hyperbranched polyesters were modified by blocking part of the hydroxyl groups with trimethylsilyl or benzoyl groups. The curing of mixtures of DGEBA with various proportions of two modified HBPs using ytterbium triflate as cationic initiator was investigated using differential scanning calorimetry and thermomechanical analysis. The characterization of these materials was performed using several thermal analysis techniques and their morphology was investigated using electron microscopy. High proportions of HBPs reduced the glass transition temperature and the relaxed storage modulus but barely affected gelation. The overall curing shrinkage was controlled by the content of hydroxyl groups and by the changes of HBP molecular interactions during curing. The results indicated that the relative proportion and type of terminal groups play a role in the evolution of the curing and the properties of the thermosets. Hydroxyl groups promoted the covalent incorporation of the HBP to the network via hydroxyl‐induced chain‐transfer reactions, whereas benzoyl groups promoted phase separation. Formulations containing HBP blocked with benzoyl groups showed two phases connected through covalent linkages between the HBP‐rich phase and the epoxy matrix. Copyright © 2010 Society of Chemical Industry  相似文献   

14.
Poly(styrene‐co‐butyl methacrylate) and poly(styrene‐co‐butyl acrylate) latices were prepared by emulsion polymerization with alkali‐hydrolyzable and nonhydrolyzable cationic emulsifiers and were used as a dispersant and binder for waterborne carbon black (CB) paint. CB was dispersed in the latex solutions and then coated on filter paper pretreated with dilute aqueous Na2CO3 under mild conditions. The styrene (St)‐rich rigid copolymer latices easily dispersed the CB but fixed a little amount of the pigment on the paper surface. In contrast, the methacrylate‐ and acrylate‐rich soft latices tended to increase the adhesibility on it. We also demonstrated that the hydrolyzable‐emulsifier‐containing latices always had a higher adhesibility than the nonhydrolyzable‐emulsifier‐containing ones. Thus, the hydrolyzable‐emulsifier‐containing latices with an appropriate St content had the highest paintability, rapid adhesion, quick drying, reduced fading, superior fastness, and so on. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3869–3873, 2013  相似文献   

15.
In this study, self‐crosslinking core–shell latexes comprising copolymerized perfluorethyl groups and a novel flame retardant based on phosphazene derivative were prepared by the semi‐continuous non‐seeded emulsion polymerization of 2,2,2‐trifluorethyl methacrylate, methyl methacrylate, butyl acrylate, methacrylic acid, and hexaallylamino‐cyclo‐triphosphazene as main monomers. For interfacial crosslinking, diacetone acrylamide was copolymerized into the shell layer of latex particles to provide sites for subsequent reaction with adipic acid dihydrazide. The heterogeneous cation‐exchange membranes were obtained by dispersing commercial strong acid cation‐exchange resin powder in the latex binder and casting the mixture followed by keto‐hydrazide crosslinking reaction. It was found that the increased concentration of fluorine atoms and phosphazene units in the macromolecular structure of interfacially crosslinked emulsion polymers resulted in a significant enhancement of their flame resistance and shape stability in aqueous environment. Moreover, the easily prepared heterogeneous cation‐exchange membranes based on latexes with higher amounts of fluorine and phosphazene units were shown to exhibit satisfactory physicochemical and electrochemical properties. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45467.  相似文献   

16.
This paper investigates the cure kinetics for the ultraviolet (UV) cationic polymerization for both a cycloaliphatic and diglycidyl ether of bisphenol‐A (DGEBA) epoxy system, using the photoinitiator triarylsulfonium hexafluoroantimonate salt. Using an autocatalytic kinetic cure model, the reaction rate values for both cycloaliphatic and DGEBA epoxy systems were determined for different photoinitiator amount (wt %) added, and at different UV exposure temperatures. The value for the cycloaliphatic epoxy increased significantly with addition of the sulfonium salt, reaching a limiting maximum after 2%. The value for the DGEBA epoxy system also increased, to a limiting maximum after 3%. Addition of the sulfonium salt significantly lowered the activation energy for the cycloaliphatic epoxy at all levels of addition, with the reduction proportional to the amount of salt added. In contrast, the sulfonium salt did not have a major effect on the DEGBA until the addition of at least 3% of the salt. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1587–1591, 2002  相似文献   

17.
The mechanical and electrical properties of poly(vinylidene fluoride–tetrafluoroethylene–propylene) (PVDF–TFE–P) and carbon black–filled PVDF–TFE–P composites were investigated. The carbon black was used for its electrolyte absorption properties in addition to boosting the conductivity. This elastomeric binder system may have application to tin‐ or silicon‐based electrode materials for Li‐ion batteries, which undergo huge volumetric changes during charge/discharge cycling. The mechanical and electrical properties were measured while film samples were immersed in a liquid solvent (ethylene carbonate : diethyl carbonate 1 : 2) commonly used in the battery electrolyte. Uncrosslinked PVDF–TFE–P uptakes about 140% solvent by mass and swells significantly. The amount of solvent absorbed can be reduced and the mechanical properties improved by crosslinking the polymer. Two crosslinking recipes, based on bisphenol and triethylenetetramine (TETA), were investigated carefully. Compared to the bisphenol‐based crosslinking recipe, the proposed TETA‐based crosslinking recipe gave films with a higher degree of crosslinking and better mechanical properties. The TETA‐crosslinked composites had very good mechanical and electrical reversibility even during cyclic deformation to 100% strain. The cycling results of amorphous Si0.64Sn0.36 electrodes show that the capacity retention of the electrodes can be significantly improved by using the proposed elastomeric binder. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2958–2965, 2004  相似文献   

18.
Mixtures of diglycidylether of bisphenol A (DGEBA) with 1,3‐benzodioxolane‐2‐one (CC) or 4‐phenoxymethyl‐1,3‐dioxolane‐2‐one (PGEC) were cured in the presence of lanthanum triflate. FTIR/ATR was used to study the evolution of carbonate and epoxide groups to follow the reactive processes that take place during curing. DSC was applied to study the thermal characteristics of the curing process and to determine the glass‐transition temperatures of the cured materials. The kinetics of the curing was studied isothermally by means of FTIR and the kinetic model was selected through the isokinetic relationships. DSC experiments were used to study the kinetics in nonisothermal conditions by means of isoconversional procedures and the Coats–Redfern and Criado methodologies. By TMA we could monitor the evolution of the shrinkage during isothermal curing. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2875–2884, 2007  相似文献   

19.
The synthesis, processing, and characterization of new crosslinked functional polymer thin films derived from fumaryl chloride and maleic anhydride is presented. Experimental data demonstrated that this is a versatile, convenient, and cost‐effective method of fabricating ultrastructure crosslinked and functional polymer thin films for potential nonlinear optical (NLO) or other applications where molecular orientation is required. The unsaturated and processable polyester thin films are capable of crosslinking in air to form a hardened lattice under a variety of conditions, including both thermal and photoinitiated crosslinking. The thermal stability of the second harmonic (SHG) signal for a crosslinked NLO thin film was stable at temperatures up to 150°C, which is in contrast to uncrosslinked polymers whose SHG signals typically decreased over 50% below 100°C. Because of the lack of NH/OH groups and their vibrational overtones in the polymer, these crosslinked polyester systems have a great potential for low optical loss applications at 1550 nm communication wavelength. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 317–322, 2004  相似文献   

20.
The thermal cationic curing of mixtures, in various proportions, of diglycidylether of bisphenol A with two substituted condensed bis(γ‐lactone)s initiated using scandium, ytterbium and lanthanum triflates or a conventional boron trifluoride monoethylamine (BF3·MEA) initiator was investigated. The evolution of the various reactive groups was followed by means of attenuated total reflection Fourier transform infrared spectroscopy. The formation of mono‐spiroorthoesters (monoSOE)s and bis‐spiroorthoesters (bisSOE)s is discussed. The polymerization of bisSOE structures led to the formation of ether–ester–ketone repeat units, which implied the cationic polymerization took place by a tandem reaction. The use of scandium triflate as an initiator led to the highest chemical incorporation of lactone in the network. Moreover, this initiator was the most active, incorporating a higher proportion of lactone in a shorter time. In contrast, the conventional BF3·MEA initiator incorporated the lowest proportion of bislactone in the cured material. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号