首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamic headspace (DHS) thermal desorption principle using Tenax GR tube, as well as the solid phase micro‐extraction (SPME) tool with carboxen/polydimethylsiloxane 50/30 µm CAR/PDMS SPME fiber, both coupled to GC/MS were implemented for the isolation and identification of both lipid and Strecker derived volatiles in marine phospholipids (PL) emulsions. Comparison of volatile extraction efficiency was made between the methods. For marine PL emulsions with a highly complex composition of volatiles headspace, a fiber saturation problem was encountered when using CAR/PDMS‐SPME for volatiles analysis. However, the CAR/PDMS‐SPME technique was efficient for lipid oxidation analysis in emulsions of less complex headspace. The SPME method extracted volatiles of lower molecular weights more efficient than the DHS method. On the other hand, DHS Tenax GR appeared to be more efficient in extracting volatiles of higher molecular weights and it provided a broader volatile spectrum for marine PL emulsion than the CAR/PDMS‐SPME method.  相似文献   

2.
Lipid oxidation has great impact on the quality of food products through flavor and taste deterioration, reduction in nutritive value, and potential toxicity of the oxidized food components. Flavor and taste deterioration can be easily perceived and it represents one of the major causes of consumer complaints in the food industry. The deterioration of sensory properties is due to the decomposition products of hydroperoxides that easily isomerize and degrade into volatile compounds. Volatile products are responsible for flavor and taste deterioration. In this study, we present the development of the solid‐phase microextraction gas chromatography‐mass spectrometry (SPME‐GC‐MS) technique to quantify low amounts (μg/g range) of secondary oxidation products, i.e. hexanal. The optimization of SPME parameters is a difficult task because of the possibility of further formation of volatile products during analysis. Different parameters such as type of fiber, exposure time of the fiber to the sample headspace and the optimal temperature of absorption have also been investigated. The complete validation of the method was achieved by the determination of linearity, limits of detection and quantification and repeatability. We demonstrated that the SPME method is a valuable tool for the quantification of low amounts of secondary oxidation products such as hexanal. Therefore, this technique can be used to detect early formation of volatiles.  相似文献   

3.
Long‐chain polyunsaturated fatty acids (LC‐PUFA) have various positive biological effects. Fish oil represents a major source of LC‐PUFA; therefore it is extensively used to enrich food products as, for example, infant formulae, dairy products and fruit juices. However, in the presence of oxygen and metals, LC‐PUFA readily degrade, producing off‐flavors and decreasing the nutritional value of the product. The deterioration of sensory properties (taste and odor) can be easily perceived by the consumer, due to the formation of volatile compounds that are formed by decomposition of lipid hydroperoxides, also known as primary oxidation products. In this study, we used the headspace solid‐phase microextraction‐gas chromatography/mass spectrometry technique (HS‐SPME‐GC/MS) to characterize and quantify volatile compounds in a food matrix supplemented with fish oil. We demonstrated that the HS‐SPME‐GC/MS method is a valuable tool to monitor lipid oxidation at early stages. We identified t‐2‐hexenal and c‐4‐heptenal as possible oxidation markers during the storage of milk enriched with 5% of cod oil.  相似文献   

4.
Margarines are water‐in‐oil (W/O) emulsion‐type products produced with butter aroma. The aim of this study is to investigate the volatile release of the butter aroma compounds used in the water phase of model margarine and sensory properties influenced by the change of fat and emulsifier. A headspace/solid phase microextraction/gas chromatography/mass spectrometry (HS/SPME/GC/MS) system is used for the identification of the volatile compounds. It is determined that high fat content in model margarine samples results in an increase in the release of both 2,3‐butandione and butanoic acid. On the other hand, an increase in fat content reduces the release of butanoic acid ethyl ester and vanillin. In addition, an increase in the emulsifier content of the model margarines results in a decrease in butanoic acid ethyl ester release. The model margarines with 80% fat content have the highest hardness and storage modulus (G′) values. The perception of butter aroma and taste are more intense in high‐fat margarine samples, while fruity aroma and taste, vanilla aroma, and taste perception are higher in low‐fat margarine samples. However, emulsifier content does not affect the sensory properties of the model margarines. Practical Applications: Decreasing high fat content food intake has become increasingly popular among consumers. Thus, in order to meet consumer demands, manufacturers have begun to reduce the fat content of the foods they produce. However, the flavor properties of a product can change as a consequence of fat content reduction. In order to produce a product in accordance with the properties demanded by the consumer, the change in the flavor of that product should be foreseen depending on the change in fat content. This study aimed to determine the volatile compound release and sensory properties of margarine samples due to fat and emulsifier changes. The findings of this study are a guide for the production of low‐fat products.  相似文献   

5.
采用顶空固相微萃取法(HS-SPME)提取烤牛肉香精的挥发性成分,并结合气-质联用技术(GC/MS)分析其挥发性成分。结果表明:在烤牛肉香精中鉴定出24种挥发性成分,主要包括羧酸类化合物、醛类化合物、酚类化合物、醇类和杂环类(吡嗪环、噻唑环)化合物。  相似文献   

6.
7.
To elucidate the influence of the cultivation area and climatic conditions on volatiles of virgin olive oil from Gemlik cultivar, an investigation was carried out. Five Turkish geographical zones (Bal?kesir, Ayd?n, Manisa, Antalya and Hatay) were chosen. From these areas, fruits were collected at the same maturity stage and processed using a small experimental olive oil mill, applying identical processing conditions for all olive samples. Headspace solid‐phase microextraction (HS‐SPME) technique coupled to GC/MS was used for volatile analysis. Twenty‐seven compounds were identified and characterised, representing 96.40–98.74% of the total GC area. The major volatile representing about 50% was the (E)‐2‐hexenal. This compound was found in higher concentrations on olive oils from Antalya than from Hatay area. Hexanal was the second most abundant volatile compound and varied between 13.89 and 28.96%. Comparing the olive growing areas Hatay and Antalya, the hexanal concentration was about 29 and 14%, respectively. Generally, a significant difference in the composition of volatile compounds between the oils from the same olive cultivar and from different geographic regions was recorded. The results suggest that climatic factors, latitude and longitude affect the formation of volatiles.  相似文献   

8.
Fruits from three Tunisian cultivars of Olea europea L. grown in the southeast of Tunisia were harvested at the maturity stage of ripeness and immediately processed with a laboratory mill. There are as yet no data on the chemical composition of virgin olive oils from the southeast of Tunisia, an area characterized by an arid condition of growth for olive trees. Our results showed significant differences in the analytical parameters examined for the three cultivars such as fatty acid composition, total phenols and o‐diphenols, and the content of chlorophylls and carotenoids, confirming the importance of genetic factors in the chemical characteristics of the oil. Headspace solid‐phase microextraction (HS‐SPME) was applied to the analysis of volatile compounds of virgin olive oils. Forty‐eight compounds were isolated and characterized by GC‐RI and GC‐MS, representing 94.1–98.1% of the total amount. (E)‐Hex‐2‐enal, the main compound extracted by SPME, characterized the olive oil headspace for all samples. So, it was clearly shown that there were qualitative and quantitative differences in the proportion of volatile constituents from oils of the various cultivars.  相似文献   

9.
Flavored rapeseed oil (FRO) is a typical hot‐pressed oil and is widely consumed in China due to its strong characteristic flavor and intensive color. In this study, volatile profiles of 33 representative commercial rapeseed oils in China are characterized by gas chromatography‐mass spectrometry (GC‐MS) and flash gas chromatography (GC) electronic nose system. 51 volatile compounds are identified and the nitriles (methallyl cyanide and 5‐cyano‐1‐pentene), aldehydes (nonanal, 3‐furaldehyde, and 5‐methyl‐2‐furancarboxaldehyde), alcohols (1,5‐hexadien‐3‐ol, 2‐furanmethanol, and phenylethyl alcohol), and pyrazines (2,5‐dimethyl‐pyrazine and 2,6‐dimethyl‐pyrazine) are the major volatile compounds in FROs. Glucosinolate degradation products account for the highest proportion of these volatiles, which are found to have a positive correlation with the erucic acid content (R2 = 0.796, p < 0.01). FRO from Sichuan province in the southwest of China can be characterized by the obvious distinctions in flash GC electronic nose combined with principal component analysis, which indicates that the flash GC electronic nose can be used as a promising method to identify the origins of FRO. Practical Applications: This work is helpful for expanding the knowledge of volatiles of commercial flavored rapeseed oil. The data can also serve as a basis for the quality assessment of hot‐pressed rapeseed oil. Meanwhile, the flash GC electronic nose combined with principal component analysis can be used as a promising method for the classification of flavor rapeseed oil production areas.  相似文献   

10.
The method of headspace coupled with comprehensive two‐dimensional GC–time‐of‐flight MS (HS‐GC × GC–TOF/MS) was applied to differentiate the volatile flavor compounds of three types of pure vegetable oils (sesame oils, peanut oils, and soybean oils) and two types of adulterated oils (sesame oils and peanut oils adulterated with soybean oils). Thirty common volatiles, 14 particular flavors and two particular flavors were identified from the three types of pure oils, from the sesame oils, and from the soybean oils, respectively. Thirty‐one potential markers (variables), which are crucial to the forming of different vegetable oil flavors, were selected from volatiles in different pure and adulterated oils, and they were analyzed using the principal component analysis (PCA) and cluster analysis (CA) approaches. The samples of three types of pure vegetable oil were completely classified using the PCA and CA. In addition, minimum adulteration levels of 5 and 10% can be differentiated in the adulteration of peanut oils and sesame oils with soybean oils, respectively. Practical applications: The objective was to develop one kind of potential differentiated method to distinguish high cost vegetable oils from lower grade and cheaper oils of poorer quality such as soybean oils. The test result in this article is satisfactory in discriminating adulterated oils from pure vegetable oils, and the test method is proved to be effective in analyzing different compounds. Furthermore, the method can also be used to detect other adulterants such as hazelnut oil and rapeseed oil. The method is an important technical support for public health against profit‐driven illegal activities.  相似文献   

11.
Some typical original Indian edible and non‐edible fatty plant oils were subject of our investigations. Fundamental research was done on analyzing volatile compounds using HS‐SPME‐GC‐MS. In addition, a sensorial evaluation was applied to receive data on the smell of the samples. Furthermore, the typical and prevailing triacylglycerols (TAG) were investigated by MALDI‐TOF‐MS. Mass spectra reflect the TAG profiles of the whole oil samples based on the detection of [M+Na]+ ions. Oil samples exhibit quite unique TAG profiles, which are suitable for rapid characterization of the original plant oils. The fatty acid composition of the corresponding TAG structures was calculated using lipid analysis software based on the known fatty acid composition. Relative quantification of TAG components was in good agreement with the literature, in case appropriate data are available so far.  相似文献   

12.
The effect of processing aids (2.5 % of talc, NaCl or KCl) on oil extractability and the profile of phenolic and volatile compounds of Istarska bjelica and Leccino oils was studied. Talc significantly increased extractability in both cultivars, while salts increased extractability in Leccino cv. In the laboratory extracted oils, phenols were determined by a RP‐HPLC–DAD method, whereas volatiles were determined by SPME/GC–MS. Talc addition significantly decreased hydroxytyrosol and increased ligstroside derivatives in produced oils, but did not affect the total phenol content. Among volatile compounds, only Z‐2‐penten‐1‐ol in Leccino and 1‐pentene‐3‐one in Istarska bjelica oils significantly increased by talc addition. Salts improved transfer of most individual phenols into oil, particularly oleuropein derivatives, and increased C6 aldehydes and C5 volatiles in Leccino oils. NaCl exerted a stronger effect in increasing individual phenols and volatiles than KCl.  相似文献   

13.
This study analyzed volatile aromatic compounds present in the oils of Turkish olive cultivars. The cultivars Gemlik, Ayval?k, Memecik, Domat, Uslu, Halhal?, Kilis ya?l?k, Nizip ya?l?k, Ha?ebi and Karamani were harvested from important Turkish olive‐growing locations, such as Bal?kesir, Bursa, Manisa, Ayd?n, Mu?la, ?zmir, Kilis, Mersin, Hatay and Gaziantep during the 2007–2008 and 2008–2009 growing seasons. Olive samples were collected in two harvest years, at almost the same maturity stage, and processed under the same conditions. Headspace solid‐phase microextraction (HS‐SPME) was used to analyze volatile aroma compounds in the olive oil samples. Forty‐seven compounds were characterized and quantified using gas chromatography‐mass spectrometry/flame ionization detector (GC–MS/FID). The most abundant identified compounds were trans‐2‐hexenal, hexanal and 3‐methyl‐1‐butanol. The trans‐2‐hexenal, hexanal and 3‐methyl‐1‐butanol contents of oil samples varied between 0.86–67.15, 3.93–61.82 and 0.48–84.74 %, respectively.  相似文献   

14.
Oxidation of unsaturated fatty acids is responsible for off‐flavours, often described as rancid flavours. This study was aimed at describing the evolution of the odour of a sunflower oil‐in‐water emulsion during oxidation at 50 °C in the dark. Appearance of an odour and occurrence of oxidation were first tested for at short‐time aging (0–4 h) by the triangle test and measurements of oxygen consumption, respectively. The odour of the emulsion oxidised for up to 240 h was then characterised by sensory profile, while volatiles issued from lipid oxidation were analysed in the headspace by SPME. From 1 h of aging, while oxygen consumption remained weak, a significant change of the odour was detected by the panel. Up to 21 volatile compounds were identified in the headspace of long‐time‐oxidised emulsions. Beyond the rancid attribute, seven attributes were chosen to describe the odour of oxidised emulsions, four of which referring to solutions of a single volatile oxidation compound. The contribution of the fresh oil attribute, initially dominant, was progressively overtaken from 6 to 24 h of aging by the deep‐fried attribute, which later declined in favour of the painty attribute, predominant after 100 h. Evolution of intensity scores and contribution to odour profiles of attributes could not be easily related to one reference volatile compound or another, confirming the complex relationship between the generated volatile compounds and the perceived odour.  相似文献   

15.
在优化的顶空固相微萃取(SPME)和气相色谱-质谱(GC-MS)条件下对酿造酱油和酸水解植物蛋白调味液的挥发性成分进行了分析,提出了以二者的特征指示性成分判别酱油中是否添加酸水解植物蛋白调味液的方法。优化的SPME条件为:于50℃,氯化钠100 g/L的条件下萃取30 min。在10个不同酿造酱油样品中共确定出11个特征共有成分,在12个酸水解植物蛋白调味液中确定15个特征成分。通过排除焦糖色素中挥发性成分对特征组分的干扰,确定了以1-辛烯-3-醇作为酿造酱油的指示性成分,1-苯基-2-丙酮作为酸水解植物蛋白调味液的指示性成分,提出了酱油鉴别的新方法,并应用于市售酱油的鉴定。  相似文献   

16.
The high level of PUFA in fish oil, primarily eicosapentaenoic acid (EPA) and DHA result in rapid oxidation of the oil. Current methods used to assess oxidation have little correlation with sensory properties of fish oils. Here we describe an alternative method using solid phase microextraction (SPME) combined with GC‐MS to monitor volatile oxidation products. Stepwise discriminant function analysis (DFA) was used to classify oils characterized as acceptable or unacceptable based on sensory analysis; a cross‐validated success rate of 100% was achieved with the function. The classification function was also successfully validated with tasted samples that were not used to create the method. A total of 14 variables, primarily aldehydes and ketones, were identified as significant discriminators in the classification function. This method will be useful as a quality control method for fish oil manufacturers. Practical applications: This paper describes an analytical method that can be used by fish oil manufacturers for quality control purposes. Solid phase microextraction and GC‐MS were used to monitor volatile oxidation products in fish oil. These data, combined with results of analyses by a sensory panel, were used to create a function that classified fish oil samples as acceptable or unacceptable. The volatile oxidation products used to in the function were primarily aldehydes and ketones. This method can be used by fish oil manufacturers as an alternative to expensive sensory panels.  相似文献   

17.
The aim of the present study was to compare oxidative stability of different sunflower and rapeseed oils. Ultra violet (UV) irradiation was used as an accelerator of the oil oxidation process. After UV irradiation, the formed volatile compounds were extracted by headspace solid‐phase microextraction HS‐SPME (DVB/CAR/PDMS fibre) and analysed by gas chromatography coupled with a flame ionization detector (GC/FID). At the same time, the same oil samples were thermally oxidized. The induction periods were determined on the basis of hexanal to 2‐trans‐nonenal ratio in the analysed samples. Finally, the obtained results were compared with induction period values obtained through the determination of peroxide and anisidine values, and from the Rancimat method, manostatic test and differential scanning calorimetry (DSC) method. The results obtained using the new method were well correlated with those achieved with the well‐established analytical techniques. The values of the induction period obtained after UV/HS‐SPME/GC/FID were up to three times higher than those from Rancimat, but the correlation between these two methods was on a very good level (correlation coefficient R>0.98). Similar correlation was also observed between these new methods and the DSC or manostatic test. In all cases, better results were obtained for rapeseed oils than sunflower oils.  相似文献   

18.
Solid‐phase microextraction (SPME) in combination with GG‐MS was applied to quality control polyamide 6.6 collected for recycling and to study the long‐term properties and degradation of nitrile rubber, polyethylene, and polyamide 6.6. The migration of plasticizer and other additives reduces the service‐life and changes the properties of the material. It is also a possible health hazard, for example, legislation against the use of brominated flame retardants in plastic materials, is under discussion, and fast and reliable methods are required to detect such compounds in plastic materials collected for recycling. SPME rapidly and effectively extracted several brominated compounds from in‐plant collected polyamide 6.6. Migration of tris(2‐butoxyethyl)phosphate plasticizer and its degradation products from nitrile rubber during long‐term thermal ageing at 60 and 80°C was shown by SPME‐GC‐MS, while the plasticizer was not volatile enough to be detected by traditional HS‐GC‐MS. In accordance the number of degradation products extracted from thermo‐oxidized PE by HS‐SPME was three times larger than the number detected after HS‐GC‐MS analysis. SPME‐GC‐MS could also detect early signs of degradation in thermo‐oxidized virgin and in‐plant recycled polyamide 6.6 before any signs of degradation were observed by, for example, tensile testing or FTIR. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 867–873, 2003  相似文献   

19.
Membrane inlet mass spectrometry (MIMS) has been developed for the on‐line monitoring of compounds in a continuous stirred tank bioreactor (CSTB) used to simulate a wastewater treatment plant (WWTP). A mixture of four industrially relevant nitrogen‐containing volatile and semi‐volatile compounds was fed to a 3 dm3 CSTB with a hydraulic retention time (HRT) of 24 h. In‐membrane preconcentration/thermal desorption was used for the on‐line monitoring of semi‐volatile compounds (n‐methylpyrrolidinone and tetramethylethylenediamine), while volatile organic compounds (3‐bromopyridine and 2‐chloro‐5‐trifluoromethylaniline) were determined by continuous infusion through the membrane. Quantification of the four compounds was achieved by MS. The CSTB was run for 160 h and, after reaching steady state, n‐methylpyrrolidinone showed removal to levels below the limit of detection, while there was partial biodegradation of 2‐chloro‐5‐trifluoromethylaniline and 3‐bromopyridine. There was no evidence of significant biodegradation for tetramethylethylenediamine. Intermediates in the metabolite pathways of 2‐chloro‐5‐trifluoromethylaniline and 3‐bromopyridine were identified by MIMS, gas chromatography/mass spectrometry (GC/MS) or liquid chromatography/mass spectrometry (LC/MS). COD was measured off line, and results agreed well with MIMS, although COD data did not provide information on the removal of the individual compounds. Copyright © 2003 Society of Chemical Industry  相似文献   

20.
建立了顶空静态进样GC-MS快速分析北柴胡果实挥发性成分的方法。选择北柴胡果实,采用顶空静态提取的方法,提取物直接经气相色谱-质谱分析,以NIST数据库检索化合物的结构,以峰面积归一化法测定各挥发性成分的相对含量。结果表明:顶空加热提取挥发性成分经GC-MS分析,鉴定柴胡果实中36个挥发性化学成分,主要挥发性成分为1-甲基-5-亚甲基-8-(1-甲乙基)-1,6-环癸二烯(36.04%),3.7-二甲基-1,3,6-辛三烯(14.77%),2-乙基呋喃(4.42%)。顶空静态进样结合GC-MS定性分析能够快速建立柴胡果实的低温易挥发性成分GC-MS表征体系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号