首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermolysis of labile 1,2‐bis(trimethylsilyloxy)tetraphenylethane groups pendant along polystyrene chains in the presence of various vinyl monomers leads to the direct synthesis of graft copolymers. Depending on the monomer chosen, the polymerization temperature, and the number of active sites by the macroinitiator molecule, crosslinked or total soluble graft copolymers can be prepared. Several conditions were studied in order to attain soluble polystyrene‐g‐poly(methyl methacrylate) copolymers under a controlled polymerization mechanism. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 12–18, 2002  相似文献   

2.
Poly(epichlorohydrin‐g‐styrene) and poly (epichlorohydrin‐g‐methyl methacrylate) graft copolymers were synthesized by a combination of cationic and photoinitiated free‐radical polymerization. For this purpose, first, epichlorohydrin was polymerized with tetrafluoroboric acid (HBF4) via a cationic ring‐opening mechanism, and, then, polyepichlorohydrin (PECH) was reacted ethyl‐hydroxymethyl dithio sodium carbamate to obtain a macrophotoinitiator. PECH, possessing photolabile thiuram disulfide groups, was used in the photoinduced polymerization of styrene or methyl methacrylate to yield the graft copolymers. The graft copolymers were characterized by 1H‐NMR spectroscopy, differential scanning calorimetry, and gel permeation chromatography. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Methyl methacrylate (MMA) was successfully grafted onto rubber‐wood fiber in a free‐radical solution polymerization initiated by ferrous ion and hydrogen peroxide. The effects of the reaction parameters (reaction temperature, reaction period, influence of hydrogen peroxide, ferrous ammonium sulfate, and monomer concentrations) were investigated. The grafting percentage showed dependency on H2O2, Fe2+, and monomer concentrations, as well as reaction temperature and reaction period. The optimum reaction temperature was determined to be about 60°C and the reaction period was 60 min. The optimum concentration of H2O2 was 0.03M and optimum amounts of Fe2+ and MMA were 0.26 mmol and 2.36 × 10?2 mol, respectively. Poly(methyl methacrylate) (PMMA) homopolymer was removed from the graft copolymer by Soxhlet extractor using acetone. The presence of PMMA on the fiber was shown by FT‐IR spectroscopy and gravimetric analysis. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2499–2503, 2003  相似文献   

4.
Gelatin‐g‐poly (butyl acrylate) copolymers were prepared with gelatin and butyl acrylate. The effects of various reaction parameters, including the concentration of the monomer, the concentration of the initiator, the concentration of gelatin, the reaction time, and the temperature, on the swelling behavior were studied systematically. In addition, the effect of the intercalation of graft copolymers with montmorillonite on the swelling behavior was investigated. The results indicated that the graft copolymerization and intercalation with montmorillonite could greatly reduce the swelling degree of gelatin. The swelling process of the copolymers followed second‐order kinetics identical to those of the original gelatin. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1033–1037, 2005  相似文献   

5.
The grafting of the methyl methacrylate (MMA) monomer onto natural rubber using potassium persulfate as an initiator was carried out by emulsion polymerization. The rubber macroradicals reacted with MMA to form graft copolymers. The morphology of grafted natural rubber (GNR) was determined by transmission electron microscopy and it was confirmed that the graft copolymerization was a surface‐controlled process. The effects of the initiator concentration, reaction temperature, monomer concentration, and reaction time on the monomer conversion and grafting efficiency were investigated. The grafting efficiency of the GNR was determined by a solvent‐extraction technique. The natural rubber‐g‐methyl methacrylate/poly(methyl methacrylate) (NR‐g‐MMA/PMMA) blends were prepared by a melt‐mixing system. The mechanical properties and the fracture behavior of GNR/PMMA blends were evaluated as a function of the graft copolymer composition and the blend ratio. The tensile strength, tear strength, and hardness increased with an increase in PMMA content. The tensile fracture surface examined by scanning electron microscopy disclosed that the graft copolymer acted as an interfacial agent and gave a good adhesion between the two phases of the compatibilized blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 428–439, 2001  相似文献   

6.
The graft copolymerization was carried out by methyl methacrylate with starch in which azobisisobutyronitrile was used as an initiator. The grafting reactions were carried out within a 65–95°C temperature range, and the effect of the monomer, initiator concentrations, and the amount of starch on the graft yield were also investigated. The maximum graft yield was obtained at a azobisisobutyronitrile concentration of 2.0 × 10?3 mol/L. The overall rate activation energy of the reaction was found to be 89.42 kJ/mol. The grafted starches were characterized with infrared spectroscopy, scanning electron microscopy, and thermogravimetry. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 53–57, 2002  相似文献   

7.
Polystyrene (PS) chains functionalized with pendant 1,2‐bis(trimethylsilyloxy)tetraphenylethane (TPSE) groups are used as macroinitiators to initiate the polymerization of n‐butyl acrylate (BuA) to synthesize PS‐g‐poly(BuA) (PS‐g‐PBuA) copolymers at 130°C. The TPSE groups are known to function as initers in the polymerization of several vinyl monomers. The homolytic decomposition of TPSE results in a diphenylmethyl (DPM) radical attached to the main chain and a free DPM radical. The former is responsible for the polymerization initiation and the latter momentarily stops the growth of the growing grafts by the formation of a dormant species. Unfortunately, side reactions like the combination between growing grafts take place and the polymerization can only be controlled in a limited range of conversion. The most appropriate conditions for the synthesis of PS‐g‐PBuA are reported to present their potential use as thermoplastic elastomers with relatively controlled structures. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 19–26, 2002  相似文献   

8.
Graft copolymer nanoparticles prepared from chitosan (CS) and methyl methacrylate (MMA) monomer were synthesized in aqueous solution by using potassium diperiodatocuprate [Cu(III)] as an initiator and characterized in terms of particle size, zeta potential, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, thermal stability, and X‐ray diffraction spectrometry. The results indicated that CS was covalently linked to poly(methyl methacrylate) (PMMA), and the resulting copolymers formed nanoparticles. These nanoparticles [prepared at 35°C, in a weight ratio of MMA/CS of 5 : 1 and with a Cu(III) concentration of 1.5 × 10−3 mol/L] were 54–350 nm in size, with a mean hydrodynamic diameter of 183 ± 3 nm and were highly uniform in particle‐size distribution, with a rather spherical shape and an obvious positive charge surface. The effect of reaction conditions such as Cu(III) concentration, reaction temperature, and the weight ratio of MMA/CS on the mean particle size was also investigated. Insulin‐loaded nanoparticles were prepared, and their maximal association efficiency was up to 85.41%. The experiment of release in vitro showed that the nanoparticles gave an initial burst release followed by a slowly sustained one. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Graft copolymerization of methyl methacrylate onto starch was carried out in aqueous medium using Ce(IV)–glucose initiator in the temperature range 40–60°C. Effects of concentration of Ce(IV), glucose, H2SO4, monomer, and starch on grafting were investigated. Percentages of grafting were evaluated and compared. The overall energy of activation was calculated from the effects of time and temperature of polymerization. The reaction mechanism was also discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 981–990, 2004  相似文献   

10.
11.
Starch was pretreated with allyl etherification to enhance the grafting efficiency of the copolymerization of granular starch with acrylic acid and to improve the properties of starch‐g‐poly(acrylic acid) used as a warp sizing agent. The graft copolymerization was carried out in an aqueous dispersion with ferrous ammonium sulfate and hydrogen peroxide as initiators. Through the introduction of allyl groups into starch before the copolymerization, the grafting efficiency could evidently be enhanced, and properties such as fiber adhesion and film behaviors of the copolymer were improved. The pretreatment was capable of enhancing the grafting efficiency by about 10–20% when the degree of substitution of allyl starch ranged from 0.011 to 0.037. The adhesion and film behaviors also depended on the modification extent of the starch pretreatment and on the grafting ratio of the copolymer. The adhesion reached a maximum at a degree of substitution of 0.025, and the film behaviors were best when the degree of substitution ranged from 0.011 to 0.025. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
The superabsorbent's ability to resist deformation and to resist deswelling under externally applied pressures is important in practical application. For instance, it is used in infant diapers, in soil for agriculture, and in forestry. In this article, we report on the synthesis of a superabsorbent/starch‐graft‐poly(potassium acrylate‐co‐acrylamide) by inverse suspension polymerization. The effects of reaction conditions, such as monomeric concentration, ratio of water to oil, reaction temperature, and obtaining spherical resin, were investigated. Experiments showed that the superabsorbent has a good compressive strength and keeps the shape of particles after absorbing water. After mixing with soil it does not become sticky, and the loose structure can better retain air. It is fit to retain water in soil. In addition, thermogravimetric analysis revealed the superior thermal stability of the grafted product and its large particle size also reduces risk of air pollution. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1536–1542, 2003  相似文献   

13.
The graft copolymerization of methyl acrylate onto poly(vinyl alcohol) (PVA) with a potassium diperiodatonickelate(IV) [Ni(IV)]–PVA redox system as an initiator was investigated in an alkaline medium. The grafting parameters were determined as functions of the temperature and the concentrations of the monomer and initiator. The structures of the graft copolymers were confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, differential scanning calorimetry, and thermogravimetric analysis. The Ni(IV)–PVA system was found to be an efficient redox initiator for this graft copolymerization. A single‐electron‐transfer mechanism was proposed for the formation of radicals and the initiation. Other acrylate monomers, such as methyl methacrylate, ethyl acrylate, n‐butyl acrylate, and n‐butyl methacrylate, were used as reductants for graft copolymerization. These reactions definitely occurred to some degree. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 529–534, 2003  相似文献   

14.
Poly(epichlorohydrin) possessing chloromethyl side groups in the main chain was used in the atom transfer radical polymerization of methyl methacrylate and styrene to yield poly(epichlorohydrin‐g‐methyl methacrylate) and poly(epichlorohydrin‐g‐styrene graft copolymers. The polymers were characterized by 1H NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry, and fractional precipitation method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2725–2729, 2006  相似文献   

15.
A well‐defined graft copolymer, polystyrene‐graft‐poly(methyl methacrylate), was synthesized in two steps. In the first step, styrene and p‐vinyl benzene sulfonyl chloride were copolymerized via reversible addition–fragmentation chain transfer polymerization (RAFT) in benzene at 60 °C with 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as a chain transfer agent and 2,2′‐azobis(isobutyronitrile) as an initiator. In the second step, poly[styrene‐cop‐(vinyl benzene sulfonyl chloride)] was used as a macroinitiator for the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in toluene at 80 °C with CuCl as a catalyst and 2,2′‐bipyridine as a ligand. With sulfonyl chloride groups as the initiating sites for the ATRP of MMA, high initiation efficiencies were obtained. Copyright © 2006 Society of Chemical Industry  相似文献   

16.
Stimuli‐responsive biocompatible and biodegradable materials can be obtained by combining polysaccharides with polymers exhibiting lower critical solution temperature (LCST) phase behavior, such as poly(N‐isopropylacrylamide) (PNIPAAm). The behavior of aqueous solutions of sodium alginate (NaAl) grafted with PNIPAAm (NaAl‐g‐PNIPAAm) copolymers as a function of composition and temperature is presented. The products obtained exhibit a remarkable thermothickening behavior in aqueous solutions if the degree of grafting, the concentration, and the temperature are higher than some critical values. The sol–gel‐phase transition temperatures have been determined. It was found that at temperatures below LCST the systems behave like a solution, whereas at temperatures above LCST, the solutions behave like a stiff gel, because of PNIPAAm segregation. This behavior is reversible and could find applications in tissue engineering and drug delivery systems. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
To stabilize vitamin A in a cosmetic/dermatological formulation, we present here a new encapsulation method based on polymer microspheres having a localized “proton‐buffering” capacity. Poly(methyl methacrylate)‐g‐polyethylenimine (PMMA‐g‐PEI) was prepared by direct condensation grafting of PEI onto poly(methyl methacrylate‐co‐methyl acrylic acid). The reaction was confirmed by FT‐IR analysis showing the amide vibration at 1,550 cm?1. Elemental analysis indicated that the weight content of the grafted PEI was 1.6% (w/w). Vitamin A was encapsulated into PMMA‐g‐PEI microspheres by using an oil‐in‐water (O/W) single emulsion method. The presence of PEI moiety dramatically improved the chemical stability of vitamin A in microspheres. Vitamin A encapsulated within PMMA‐g‐PEI microspheres maintained 91% of its initial activity after 30‐day incubation at 40°C, while only maintaining 60% within plain PMMA microspheres. This study demonstrates that proton‐buffering within hydrophobic polymer matrix is a useful strategy for stabilizing “acid‐labile” active ingredients. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 517–522, 2004  相似文献   

18.
Poly(methyl methyacrylate)‐block‐polydimethylsiloxane (PMMA‐b‐PDMS) copolymers with various compositions were synthesized with PDMS‐containing macroazoinitiator (MAI), which was first prepared by a facile one‐step method in our lab. Results from the characterizations of X‐ray photoelectron spectroscopy (XPS), contact angle measurements, and atomic force microscopy (AFM) showed that the copolymer films took on a gradient of composition and more PDMS segments enriched at the film surfaces, which then resulted in the low surface free energy and little microphase separation at the film surfaces. By contrast, transmission electron microscopy (TEM) analysis demonstrated that distinct microphase separation occurred in bulk. Slight crosslinking of the block copolymers led to much steady morphology and more distinct microphase separation, in particularly for copolymers with low content of PDMS. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

19.
A graft copolymer was synthesized by graft copolymerization of starch with styrene (St) and butyl acrylate (BA), using ferrous sulfate‐hydrogen peroxide redox initiation system. The starch was pregelled in the presence of acrylonitrile (AN) in aqueous alkali at high temperature before graft polymerization. Major factors affecting the polymerization reaction were investigated. It was found that a graft copolymer with higher percentage conversion (PC), graft efficiency (GE) and graft percentage (GP) was obtained by controlling the initiator concentration, concentration, and ratio of monomers and polymerization temperature. The optimum conditions were as follows: H2O2 concentration, 12%; monomer concentration, 120%; St/BA ratio, 1 : 1; polymerization temperature, 65°C. Fourier transform infrared spectroscopy and NMR analyses were used to gain information on the structure of the products. It was demonstrated that St, BA, and AN had been successfully grafted onto starch and ? CN had been saponified into ? CONH2 and ? COO? to a certain degree when pregelling. Scanning electron microscope micrographs showed the coarse structure and broad network. The graft polymerization took place on the surface of starch granule and led to amorphization of the starch structure. Graft polymer had better thermal stability and was endowed with pseudo‐plasticity. It was observed that the starch graft copolymer offers good properties such as water resistance as surface‐sizing agent. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
We designed and prepared novel hybrid films of nanoparticles consisting of gelatin‐g‐poly(methyl methacrylate) (PMMA)/silver (Ag) polymers with ordered nanoporous, higher antibacterial activities. First, the gelatin‐grafted PMMA microspheres were fabricated with the in situ copolymerization of gelatin and alkenes under radical initiation, which acted as a stabilizer and regulator for Ag nanoparticle growth. Then, silver nitrate was entrapped in a copolymerization system at 40°C for 30 min. Finally, the gelatin‐g‐PMMA/Ag polymer hybrid films were prepared by the reduction of Ag+ with hydrazine, followed by emulsion solidification. The antibacterial activities of the gelatin‐g‐PMMA/Ag polymer hybrid films against Escherichia coli and Staphylococcus aureus were found with the disc diffusion method and colony count assays to be clear and lasting. In this study, our work not only presented a good example of a nanoporous antibacterial film material but also provided a facile method for making use of gelatin and metal/inorganic self‐assemble properties in graft copolymerization to prepare functional polymer hybrids, such as antibacterial, antithrombogenic, and dot‐quantum effect materials. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号