首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
The effect of grain size and composition on the fracture toughness of Ti–Al–Nb alloys in β solution-treated condition was investigated. The fracture toughness of the alloys was found to increase with an increase in grain size initially, reach a maximum and subsequently decrease with further increase in grain size. This trend was attributed primarily to the effect of grain size on the enhancement of fracture toughness due to stress-induced martensitic transformation (SIMT) at the crack tip, which in turn can be related to the effect of grain size on trigger stress for SIMT. Alloys containing higher Al and Nb showed a higher toughness for the same grain size, which was also explained in terms of effect of composition on the trigger stress.  相似文献   

2.
3.
The hot deformation behavior, dynamic recrystallization, and texture evolution of Ti–22Al–25Nb alloy in the temperature range of 950–1050 °C and strain rate range of 0.001–1 s?1 is investigated by plane‐strain compression testing on the Gleeble‐3500 thermo‐mechanical simulator. The results show that the flow stress decreases with the increase of temperature and decrease of strain rate. Besides, the flow curves appear a serrate oscillation at a strain rate of 0.1 s?1 for all the temperature ranges, which may result from instability such as flow localization or micro‐cracking. The flow behavior can be expressed by the conventional hyperbolic sine constitutive equation and the calculated deformation activation energy Q in the (α2 + B2) and B2 regions are 631.367 and 304.812 kJ mol?1, respectively. The microstructure evolution is strongly dependent on the deformation parameters, and dynamic recrystallization (DRX) is the dominant softening mechanism in the (α2 + B2) region, including discontinuous dynamic recrystallization (DDRX), and continuous dynamic recrystallization (CDRX). In addition, the ηbcc‐fiber of {110} <001> is the dominant texture component in deformed Ti–22Al–25Nb alloy. It is observed that the weakening of the deformation texture is accompanied by the occurrence of DRX, which can be attributed to the large misorientation between DRX grains and neighboring B2 matrix induced by the rotation of DRX grains toward the preferred slip systems.
  相似文献   

4.
O phase precipitation and variant selection in Ti–22Al–25Nb alloy during the hot shear spinning are investigated using scanning electron microscope (SEM), electron backscattered second diffraction (EBSD), and transmission electron microscope (TEM). The results show that the random O phase precipitates from the B2 matrix during the hot shear spinning. With the increase of reduction ratio, the average thickness of O precipitates increases from ≈0.18 to ≈0.50 μm. Meanwhile, the O precipitates show various morphologies, including lamella, short rod, and sphere. Twelve O variants simultaneously form in the parent B2 phase and the orientation relationship between the B2–O phases is confirmed as [?111] B2//[1–10] O and (110) B2//(001) O. Different patterns of dislocation are also found in the B2 matrix, such as dislocation tangles, dislocation nets, and dislocation arrays. They play an important role in the variant selection of O precipitates, resulting in the different angled combinations of O variants. In addition, massive dislocation piles up along the O/B2 interface and some dislocation wall generates within the O phase, which are benefit for the globularization of O precipitates.
  相似文献   

5.
6.
The effect of β-iron intermetallics and porosity on the tensile properties in cast Al–Si–Cu and Al–Si–Mg alloys were investigated for this research study, using experimental and industrial 319.2 alloys, and industrial A356.2 alloys. The results showed that the alloy ductility and ultimate tensile strength (UTS) were subject to deterioration as a result of an increase in the size of β-iron intermetallics, most noticeable up to β-iron intermetallic lengths of 100 μm in 319.2 alloys, or 70 μm in A356.2 alloys. An increase in the size of the porosity was also deleterious to alloy ductility and UTS. Although tensile properties are interpreted by means of UTS vs. log elongation plots in the present study, the properties for all sample conditions were best interpreted by means of log UTS vs. log elongation plots, where the properties increased linearly between conditions of low cooling rate–high Fe and high cooling rate–low Fe. The results are explained in terms of the β-Al5FeSi platelet size and porosity values obtained.  相似文献   

7.
A multiphase model for Ti–6Al–4V is proposed. This material is widely used in industrial applications and so needs accurate behaviour modeling. Tests have been performed in the temperature range from 25 °C to 1020 °C and at strain rates between 10−3 s−1 and 1 s−1. This allowed the identification of a multiphase mechanical model coupled with a metallurgical model. The behaviour of each phase is calibrated by solving an inverse problem including a phase transformation model and a mechanical model to simulate tests under thermomechanical loadings. A scale transition rule (β-rule) is proposed in order to represent the redistribution of local stresses linked to the heterogeneity of plastic strain. Finally this model is applied to two laser assisted processes: direct laser fabrication and laser welding.  相似文献   

8.
This work describes the evolution of texture during cold rolling and annealing of a hot rolled and solution treated sheet of a low cost β titanium alloy Ti–10V–4.5Fe–1.5Al. The alloy was cold rolled up to 60% reductions and then annealed in β phase field at different temperatures to study the re-crystallisation textures. The rolling and re-crystallisation textures obtained in this study are compared with those of other β titanium alloys and bcc metals and alloys such as tantalum and low carbon steel.  相似文献   

9.
The fatigue crack growth behaviors of Laser formed and ingot metallurgy (IM) Ti–6Al–4V alloys were studied in three environments: vacuum, air and 3.5% NaCl solution. Taking the Unified Fatigue Damage Approach, the fatigue crack growth data were analyzed with two intrinsic parameters, stress intensity amplitude ΔK and maximum stress intensity Kmax, and their limiting values ΔK* and . Fatigue crack growth rates da/dN were found increase with stress ratio R, highest in 3.5% NaCl solution, somewhat less in air and lowest in vacuum, and higher in IM alloy than in Laser formed one. In 3.5% NaCl solution, stress corrosion cracking (SCC) was superimposed on fatigue at R=0.9 for where Kmax>KISCC, the threshold stress intensity for SCC. This and environment-assisted fatigue crack growth were evidenced by the deviation in fatigue crack growth trajectory (ΔK* vs. curve) from the pure fatigue line where . Furthermore, the fractographic features, identified along the trajectory path, reflected the fatigue crack growth behaviors of both alloys in a given environment.  相似文献   

10.
In β1–Cu–Zn–Al single crystals the course of cyclic martensititic transformation ‘β1 parent phase↔γ′1 martensite’ induced by tensile stress were studied with use of X-ray topography, light microscopy and etch pits. Two groups of single crystals were studied. The first one (OR) contained single crystals of subgrain boundaries parallel to the direction of elongation [001], the second one (RA) consisted of single crystals of random subgrain boundaries orientations. Single crystals from the RA group cracked after about 300 cycles of martensitic transformation; single crystals from the OR group did not crack even after 1200 cycles. In OR single crystals changes of dislocation density inside the subgrains caused by cycling occurred much more slowly than in the RA single crystals. This has been related to the dislocation movement from inside the subgrains to their boundaries.  相似文献   

11.
The γ-precipitates in Cu–Zn–Al alloys, trained by the stabilization of the stress induced martensite (SSIM) method, have been studied. After the SSIM treatment, it was found that small γ-precipitates in the β-austenite are ellipsoidal, with a large strain field oriented in the same direction; while in the martensite the γ-precipitates changed their shape from ellipsoid to spheroid, and relaxed their strain fields. In order to check whether the strain field of the γ-precipitates is capable of producing a thermoelastic martensitic transformation, an in-situ observation, by heating a sample holder in TEM, was performed. It was found that during heating over a temperature As, the γ-precipitates with a spherical shape in the martensite recovered their strain field and elliptical shape. During cooling, the strain field of the γ-precipitates disappeared again. It was proposed that the strain field of the γ-precipitates, trained by the SSIM method, plays an important part in the thermoelastic martensitic transformation, and presents two-way shape memory effects.  相似文献   

12.
13.
Microstructure and mechanical properties of friction welded γ‐TiAl based alloy Ti‐47Al‐3.5(Mn+Cr+Nb)‐0.8(B+Si) in investment cast condition. This paper describes properties of joints produced by friction welding of the intermetallic γ‐TiAl based alloy Ti‐47Al‐3.5(Mn+Cr+Nb)‐0.8(B+Si) in investment cast and hot‐isostatically pressed condition. The effect of friction welding parameters on microstructure and local properties are examined and discussed. It is found that the properties of the joint are essentially affected by properties of as‐cast Ti‐47Al‐3.5(Mn+Cr+Nb)‐0.8(B+Si) base material, both at room temperature and 700 °C.  相似文献   

14.
The atomic structure of a common precipitate in the Al–Mg–Si system has been determined. It is isotypic with TiNiSi (space group Pnma) and contains four units of MgAlSi in a unit cell of size a = 0.675 nm, b = 0.405 nm, c = 0.794 nm. EDS analyses support the composition. A model was based on the atomic structure of the β′ precipitate, electron diffraction and high-resolution transmission electron microscopy (HRTEM) images. A quantum mechanical refinement of the model removed discrepancies between simulated and experimental diffraction intensities. Finally, a multi-slice least square refinement confirmed the structure. The structural relation with β″ is investigated. A similar Mg–Si plane also existing in β″ and β′, can explain most coherency relations between the precipitate phases and with matrix.  相似文献   

15.
The self-propagating high-temperature synthesis (SHS) reactions can take place in Cu–Ti–Si systems with Cu additions of 10–50 wt.%, and the products only consist of Ti5Si3 and Cu phases, without any transient phase. In Ti–Si system, most of the Ti5Si3 grains synthesized exhibit the polygon-shaped coarse appearance with an obviously sintered morphology. When Cu content increases from 10 to 50 wt.%, however, the Ti5Si3 exhibits cobblestone-like shape with a relatively smooth surface, and its average size decreases significantly from 15 to 2 μm or less. The formation mechanism of Ti5Si3 in Cu–Ti–Si system is characterized by the solution, reaction and precipitation processes. Furthermore, the addition of Cu has a great influence on the volume change between green and reacted preforms. The volume change increases with Cu content increasing from 0 to 20 wt.%, and then decreases with the content further increasing from 20 to 50 wt.%. The addition of Cu to Ti–Si system significantly decreases the onset temperature of the reaction during differential scanning calorimetry process, which is even much lower than the α → β transition temperature of Ti (882 °C), suggesting that the reaction could be greatly facilitated by Cu addition. As a result, the role of Cu serves not only as a diluent but also as a reactant and participates in the self-propagating high-temperature synthesis reaction process.  相似文献   

16.
17.
Lithium‐sulfur batteries have attracted worldwide interest due to their high theoretical capacity of 1672 mAh g?1 and low cost. However, the practical applications are hampered by capacity decay, mainly attributed to the polysulfide shuttle. Here, the authors have fabricated a solid core–shell γ‐MnO2‐coated sulfur nanocomposite through the redox reaction between KMnO4 and MnSO4. The multifunctional MnO2 shell facilitates electron and Li+ transport as well as efficiently prevents polysulfide dissolution via physical confinement and chemical interaction. Moreover, the γ‐MnO2 crystallographic form also provides one‐dimensional (1D) tunnels for the Li+ incorporation to alleviate insoluble Li2S2/Li2S deposition at high discharge rate. More importantly, the MnO2 phase transformation to Mn3O4 occurs during the redox reaction between polysulfides and γ‐MnO2 is first thoroughly investigated. The S@γ‐MnO2 composite exhibits a good capacity retention of 82% after 300 cycles (0.5 C) and a fade rate of 0.07% per cycle over 600 cycles (1 C). The degradation mechanism can probably be elucidated that the decomposition of the surface Mn3O4 phase is the cause of polysulfide dissolution. The recent work thus sheds new light on the hitherto unknown surface interaction mechanism and the degradation mechanism of Li‐S cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号