首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present study, the electrophysiologic properties of ATP-sensitive potassium channels were evaluated in an intestinal, cholecystokinin-secreting cell line (STC-1). Channels were operative under basal conditions and, in cell-attached membrane patches, channel activity was decreased by glucose or disopyramide, agents which classically inhibit ATP-sensitive potassium channels. Channel activity was increased by the KATP channel opener, diazoxide. Intestinal ATP-sensitive potassium channels appear to behave in a similar manner to those found in cardiac and pancreatic beta cells.  相似文献   

2.
3.
ATP-sensitive potassium channels are the site of action of the sulphonylurea derivatives that are used to treat non-insulin-dependent diabetes mellitus. These ATP-sensitive potassium channels are also found in myocardial cells and in vascular smooth muscle cells. The sulphonylurea derivatives have been reported to cancel the cardioprotective effects by blocking the opening of these channels in myocardium and vascular smooth muscles. A new sulphonylurea derivative, glimepiride, has been shown to be devoid of vascular ATP-sensitive potassium channel binding properties. The so called potassium-channel-openers, on the other hand, are expected to be used in the treatment of hypertension, ischemic heart disease and asthma bronchiale.  相似文献   

4.
EP Wei  HA Kontos  JS Beckman 《Canadian Metallurgical Quarterly》1998,29(4):817-22; discussion 823
BACKGROUND AND PURPOSE: Hydrogen peroxide and peroxynitrite are capable of generating hydroxyl radical and are commonly suspected as sources of this radical in tissues. It would be useful to distinguish the source of hydroxyl radical in pathophysiological conditions and to clarify the mechanisms by which antioxidants modify vascular actions of oxidants. METHODS: We investigated the effect of three antioxidants--dimethylsulfoxide (DMSO), salicylate, and L-cysteine--on the cerebral arteriolar dilation caused by topical application of hydrogen peroxide and peroxynitrite in anesthetized cats equipped with cranial windows. We also tested the effect of these antioxidants on the vasodilation caused by pinacidil and cromakalim, two known openers of ATP-sensitive potassium channels. RESULTS: DMSO was more effective in inhibiting dilation from hydrogen peroxide, whereas salicylate and L-cysteine were more effective in inhibiting dilation from peroxynitrite. All three antioxidants inhibited dilation in concentrations that were remarkably low (< 1 mmol/L). All three antioxidants inhibited vasodilation from two known potassium channel openers, pinacidil and cromakalim. Their effect was specific because they did not affect dilation from adenosine or nitroprusside. CONCLUSIONS: The findings show that antioxidants block ATP-sensitive potassium channels in cerebral arterioles. This appears to be the mechanism by which antioxidants inhibit the dilation from hydrogen peroxide and peroxynitrite and not through scavenging of a common intermediate, ie, hydroxyl radical. The differences between effectiveness in inhibiting dilation from hydrogen peroxide and peroxynitrite by various antioxidants suggest that hydrogen peroxide and peroxynitrite act at two different sites, one in a water-soluble environment and the other in a lipid-soluble environment.  相似文献   

5.
We used [3H]glibenclamide binding to assess ATP-sensitive K+ channels in isolated cerebral microvessels and in the cerebral cortex of the rat. We found no measurable specific glibenclamide binding in cerebral microvessels despite its abundance in cerebral cortical membranes, implying that ATP-sensitive K+ channels are not present in cerebral microvessels.  相似文献   

6.
We examined the hypothesis that dilatation of the basilar artery in response to activation of ATP-sensitive potassium channels is impaired in stroke-prone spontaneously hypertensive rats (SHRSP). Changes in basilar artery diameter in response to aprikalim, a direct activator of ATP-sensitive potassium channels, were measured in anesthetized SHRSP and normotensive Wistar-Kyoto (WKY) rats through a cranial window. Topical application of aprikalim increased basilar artery diameter in WKY rats. Glibenclamide, a selective inhibitor of ATP-sensitive potassium channels, abolished aprikalim-induced vasodilatation. Thus, ATP-sensitive potassium channels are functional in the basilar artery of WKY rats in vivo. Aprikalim (10(-6) mol/L) dilated the basilar artery by 31 +/- 5% (mean +/- SEM) in WKY rats but only 5 +/- 1% in SHRSP. The concentration-response curve to aprikalim in SHRSP was significantly shifted to the right, but the response to the highest concentration of aprikalim (10(-5.5) mol/L) was similar in SHRSP and WKY rats. Vasodilatation in response to norepinephrine was also impaired in SHRSP. Dilator responses of the basilar artery to forskolin, a direct activator of adenylate cyclase, and nitroprusside, a direct activator of guanylate cyclase, were normal in SHRSP. The findings suggest that dilatation of the basilar artery in response to direct activation of ATP-sensitive potassium channels is impaired in SHRSP compared with WKY rats in vivo.  相似文献   

7.
8.
9.
Inactivation of the retinoblastoma (RB) gene is known to be implicated in the pathogenesis of several types of human cancers. Since structural alterations of the RB gene have not been well examined in human bladder cancer, we looked for mutations in the entire coding region of this gene using polymerase chain reaction (PCR) and single-strand conformational polymorphism analysis of RNA. We also examined allelic loss of the RB gene using PCR-based restriction fragment length polymorphism analysis. Of 30 samples obtained from patients with bladder cancer, eight (27%) were found to have RB gene mutations. DNA sequencing of the PCR products revealed five cases with single point mutations and three cases with small deletions. These mutations included one (10%) of ten low-grade (grade 1) tumours, four (50%) of eight intermediate-grade (grade 2) tumours and three (25%) of 12 high-grade (grade 3) tumours. Likewise, mutations were found in four (21%) of 19 superficial (pTa and pT1) tumours and four (36%) of 11 invasive (pT2 or greater) tumours. In 15 informative cases, loss of heterozygosity at the RB locus was shown in five cases (33%), three cases with RB mutations and two without them. These results suggest that RB gene mutations are involved in low-grade and superficial bladder cancers as well as in high-grade and invasive cancers.  相似文献   

10.
BACKGROUND: We previously demonstrated that coronary arteriolar dilation in response to acidosis is mediated by the opening of ATP-sensitive potassium (KATP) channels. However, the signal transduction involved in the KATP-channel activation during acidosis has not been elucidated. A recent study in cardiac myocytes implied that pertussis toxin (PTX)-sensitive G proteins may be involved in the signal transduction for KATP-channel activation. However, it remains unclear whether this transduction process also occurs in the vascular tissue and, in particular, whether it exerts functional dilation in response to acidosis. METHODS AND RESULTS: To examine the signaling pathway for acidosis-induced dilation, porcine coronary arterioles were isolated, cannulated, and pressurized for in vitro study. The GTPase activity in reconstituted G proteins was examined at different levels of pH. Extravascular acidosis (pH 7.3 to 7.0) produced a graded dilation of coronary arterioles. This dilation was not affected by removal of endothelium but was significantly attenuated after inhibition of KATP channels and G proteins by glibenclamide and PTX, respectively. Glibenclamide and PTX attenuated the acidosis-induced arteriolar dilation to the same extent, and combined administration of both inhibitors did not further inhibit the vasodilation. These results indicated that both inhibitors act on the same vasodilatory pathway. Furthermore, vasodilation of coronary arterioles to the KATP-channel opener pinacidil and to the endothelium-independent vasodilator sodium nitroprusside was not affected by PTX. Because PTX inhibited acidosis-induced vasodilation without inhibiting KATP-channel function, it is suggested that PTX inhibits the vasodilatory pathway upstream from KATP channels. GTPase activity in reconstituted G proteins was significantly enhanced by a reduction in pH, indicating that G proteins were directly activated by acidosis. CONCLUSIONS: On the basis of these findings, we conclude that acidosis-induced coronary arteriolar dilation is mediated by the opening of smooth muscle KATP channels through the activation of PTX-sensitive G proteins.  相似文献   

11.
To investigate the mechanism of generation of the hypoxia-induced hyperpolarization (hypoxic hyperpolarization) in hippocampal CA1 neurons in rat tissue slices, recordings were made in current-clamp mode and single-electrode voltage-clamp mode. Superfusion with hypoxic medium produced a hyperpolarization and corresponding outward current, which were associated with an increase in membrane conductance. Reoxygenation produced a further hyperpolarization, with corresponding outward current, followed by a recovery to the preexposure level. The amplitude of the posthypoxic hyperpolarization was always greater than that of the hypoxic hyperpolarization. In single-electrode voltage-clamp mode, it was difficult to record reproducible outward currents in response to repeated hypoxic exposure with the use of electrodes with a high tip resistance. The current-clamp technique was therefore chosen to study the pharmacological characteristics of the hypoxic hyperpolarization. In 60-80% of hippocampal CA1 neurons, glibenclamide or tolbutamide (3-100 microM) reduced the amplitude of the hypoxic hyperpolarization in a concentration-dependent manner by up to approximately 70%. The glibenclamide or tolbutamide concentrations producing half-maximal inhibition of the hypoxic hyperpolarization were 6 and 12 microM, respectively. The chord conductance of the membrane potential between -80 and -90 mV in the absence of glibenclamide (30 microM) or tolbutamide (100 microM) was 2-3 times greater than that in the presence of glibenclamide or tolbutamide. In contrast, the reversal potential of the hypoxic hyperpolarization was approximately -83 mV in both the absence and presence of tolbutamide or glibenclamide. In approximately 40% of CA1 neurons, diazoxide (100 microM) or nicorandil (1 mM) mimicked the hypoxic hyperpolarization and pretreatment of these drugs occluded the hypoxic hyperpolarization. When ATP was injected into the impaled neuron, hypoxic exposure could not produce a hyperpolarization. The intracellular injection of the nonhydrolyzable ATP analogue 5'-adenylylimidodiphosphate lithium salt reduced the amplitude of the hypoxic hyperpolarization. Furthermore, application of dinitrophenol (10 microM) mimicked the hypoxic hyperpolarization, and the dinitrophenol-induced hyperpolarization was inhibited by either pretreatment of tolbutamide or intracellular injection of ATP, indicating that the hypoxic hyperpolarization is highly dependent on intracellular ATP. It is therefore concluded that in the majority of hippocampal CA1 neurons, exposure to hypoxic conditions resulting in a reduction in the intracellular level of ATP leads to activation of ATP-sensitive potassium channels with concomitant hyperpolarization.  相似文献   

12.
Ciclazindol, an anorectic drug, was shown to inhibit ATP-sensitive K+ (K(ATP)) channel currents and stimulate insulin secretion from CRI-G1 insulin-secreting cells. In contrast, the structurally related anorectic agent mazindol and the amphetamine-based anorectic compounds diethylpropion, fenfluramine, and phentermine had no effect on K(ATP) channel activity in this cell line. Similarly, cicliazindol elicited insulin secretion from CRI-G1 cells, whereas mazindol had no secretagogue action. The mechanism by which ciclazindol acts to inhibit K(ATP) channel activity is different than that of the sulfonylureas as ciclazindol is effective after procedures that decouple the sulfonylurea receptor from the K(ATP) channel. In agreement with this finding, ciclazindol failed to displace [3H]glibenclamide from CRI-G1 microsomal membranes. Further experiments demonstrated that ciclazindol has no significant effect on voltage-activated currents in this cell line.  相似文献   

13.
The past year has witnessed some significant improvements in our understanding of the molecular diversity, subunit composition, and functional properties of K+ channels in heterologous expression systems. Immunocytochemical studies have yielded important information on the localization of K+ channel proteins to synaptic terminals in mammalian brain. Although a coherent picture of native presynaptic K+ channels' function in the mammalian central nervous system is not yet available, it may emerge from improvements in patch-clamp techniques and new applications of targeted knock-out technologies.  相似文献   

14.
Insulin secretion from pancreatic beta cells is coupled to cell metabolism through closure of ATP-sensitive potassium (KATP) channels, which comprise Kir6.2 and sulfonylurea receptor (SUR1) subunits. Although metabolic regulation of KATP channel activity is believed to be mediated principally by the adenine nucleotides, other metabolic intermediates, including long chain acyl-CoA esters, may also be involved. We recorded macroscopic and single-channel currents from Xenopus oocytes expressing either Kir6.2/SUR1 or Kir6. 2DeltaC36 (which forms channels in the absence of SUR1). Oleoyl-CoA (1 microM) activated both wild-type Kir6.2/SUR1 and Kir6.2DeltaC36 macroscopic currents, approximately 2-fold, by increasing the number and open probability of Kir6.2/SUR1 and Kir6.2DeltaC36 channels. It was ineffective on the related Kir subunit Kir1.1a. Oleoyl-CoA also impaired channel inhibition by ATP, increasing the Ki values for both Kir6.2/SUR1 and Kir6.2DeltaC36 currents by approximately 3-fold. Our results indicate that activation of KATP channels by oleoyl-CoA results from an interaction with the Kir6.2 subunit, unlike the stimulatory effects of MgADP and diazoxide which are mediated through SUR1. The increased activity and reduced ATP sensitivity of KATP channels by oleoyl-CoA might contribute to the impaired insulin secretion observed in non-insulin-dependent diabetes mellitus.  相似文献   

15.
Patients who cannot be reperfused after thrombolytic therapy have a high mortality rate. Noninvasive clinical markers of reperfusion have been widely studied, yet their prognostic significance remains unclear. To assess the prognostic value of commonly used noninvasive clinical markers of early reperfusion we studied 327 patients who received intravenous thrombolytic treatment (1.5 MU streptokinase in 1 hour or 100 mg alteplase in 3 hours) within 6 hours of acute infarction. Successful clinical reperfusion (SCR) was defined as the presence of at least two of the following criteria at 2 hours after thrombolytic treatment: (1) significant relief of pain (a 5-point reduction on a 1 to 10 subjective scale), (2) > or =50% reduction of sum of ST segment elevation, and (3) abrupt initial increase of creatine kinase levels (more than twofold over the upper-normal or baseline elevated values). Clinical variables that were significantly associated by univariate analysis were tested by multivariate analysis to obtain independent predictors of 30-day mortality rate. SCR was present in 210 (64%) patients (group 1), and absent in 117 (36%) patients (group 2). The groups were similar for most baseline characteristics, although group 2 patients were slightly older (mean 60 vs 57 years, p < 0.02). Thirty-day outcomes for group 2 patients compared with group 1 patients were heart failure in 23.1% and 10.5% (p < 0.005), progression to cardiogenic shock in 12.8% and 0.5%, (p < 0.00001), and death in 16.2% and 3.8% (p < 0.0001), respectively. By multivariate analysis the Killip class at admission (p < 0.00001), the absence of SCR (p = 0.017), anterior infarct location (p = 0.021), and age (p = 0.03) were independent predictors of mortality rate, and sex (p = 0.051) had borderline significance. The absence of SCR defined a group of patients with significantly higher mortality rate (odds ratio 4.89, 95% confidence interval 2.07 to 11.57). Three simple noninvasive clinical criteria of successful reperfusion may be used to identify a group of patients with poor prognosis after thrombolytic therapy in whom alternative strategies could be applied.  相似文献   

16.
Salt and water secretion by epithelial cells is required to hydrate the mucosal surface of both gastrointestinal and respiratory tracts. Intestinal secretion is the result of active transcellular chloride transport by epithelial cells lining the crypts. Defective chloride secretion is responsible for many common disorders such as secretory diarrhea and cystic fibrosis. In this review we deal with the most relevant issues regarding epithelial transcellular chloride secretion. We first consider the principles of membrane transport and transport protein function. Then, we briefly discuss the use of state-of-the-art techniques for electrophysiological studies such as "patch-clamp" and microfluorometry. The epithelial chloride secretion model is described according to observations made in both native tissue and cultured intestinal epithelial cells. Next, we consider the intracellular signaling cascades involved in the regulation of membrane transport systems and transcellular chloride secretion. Finally, the clinical implications of the most recent findings are commented, with emphasis on potential molecular targets for the treatment of cystic fibrosis and secretory diarrhea.  相似文献   

17.
ATP-sensitive K+ (K(ATP)) channels are nucleotide-gated channels that couple the metabolic status of a cell with membrane excitability and regulate a number of cellular functions, including hormone secretion and cardioprotection. Although intracellular ATP is the endogenous inhibitor of K(ATP) channels and ADP serves as the channel activator, it is still a matter of debate whether changes in the intracellular concentrations of ATP, ADP, and/or in the ATP/ADP ratio could account for the transition from the ATP-liganded to the ADP-liganded channel state. Here, we overview evidence for the role of cellular phosphotransfer cascades in the regulation of K(ATP) channels. The microenvironment of the K(ATP) channel harbors several phosphotransfer enzymes, including adenylate, creatine, and pyruvate kinases, as well as other glycolytic enzymes that are able to transfer phosphoryls between ATP and ADP in the absence of major changes in cytosolic levels of adenine nucleotides. These phosphotransfer reactions are governed by the metabolic status of a cell, and their phosphotransfer rate closely correlates with K(ATP) channel activity. Adenylate kinase catalysis accelerates the transition from ATP to ADP, leading to K(ATP) channel opening, while phosphotransfers driven by creatine and pyruvate kinases promote ADP to ATP transition and channel closure. Thus, through delivery and removal of adenine nucleotides at the channel site, phosphotransfer reactions could regulate ATP/ADP balance in the immediate vicinity of the channel and thereby the probability of K(ATP) channel opening. In this way, phosphotransfer reactions could provide a transduction mechanism coupling cellular metabolic signals with K(ATP) channel-associated functions.  相似文献   

18.
We localized and characterized the binding of [3H](+/-)-L364,718 in canine small intestine circular muscle. The highest densities of [3H]L364,718 binding were located in the fraction enriched in deep muscular plexus synaptosomal membranes. In this fraction [3H]L364,718 binding was of high density (Bmax 136.78 +/- 53.66 fmol/mg) and high affinity (Kd 1.67 +/- 0.74 nM). Kinetics studies revealed that binding was reversible and yielded a similar Kd value. L364,718, CCK-8-S, and L365,260 fully displaced [3H]L364,718 binding, but ligands at CCKB receptors, gastrin-17, and YM022 did not. Therefore, CCKA receptors in canine intestine circular muscle are located on nerve endings.  相似文献   

19.
The role of adenosine and ATP-sensitive potassium channels (KATP) in the mechanism of ischemic preconditioning (IPC)-induced protection against the post-ischemic endothelial dysfunction was studied. Langendorff-perfused guinea-pig hearts were subjected either to 40 min of global ischemia and 40 min reperfusion or were preconditioned prior to the ischemia/reperfusion with three cycles of either 5 min ischemia/5 min reperfusion (IPC) or 5 min infusion/5 min wash-out of adenosine, adenosine A1 receptor agonist, N6-cyclohexyladenosine (CHA) or KATP opener, pinacidil. The magnitude of coronary flow reduction caused by NO-synthase inhibitor, Nomega-nitro-l-arginine methyl ester (l-NAME), served as an index of a basal endothelium-dependent vasodilator tone. Coronary overflows produced by a bolus of acetylcholine (ACh) and sodium nitroprusside (SNP) were used as measures of agonist-induced endothelium-dependent and endothelium-independent vascular function, respectively. The coronary flow, LVDP, ACh response and l-NAME response were reduced by 8, 32, 41 and 54%, respectively, while SNP response was not changed in the hearts subjected to ischemia/reperfusion. ACh response was fully restored, l-NAME response was partially restored, and SNP response was not affected in the hearts subjected to IPC. The post-ischemic recoveries of coronary flow and LVDP were not improved by IPC. The protective effect of IPC on the ACh response was mimicked by adenosine, CHA, and pinacidil. The protective effect of IPC, CHA and pinacidil was abolished by KATP antagonist, glibenclamide. The IPC protection was affected neither by a non-specific adenosine antagonist, 8-p-sulfophenyltheophylline, nor by a specific adenosine A1 receptor antagonist, 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX). Our data indicate that: (1) IPC affords endothelial protection in the mechanism that involves activation of KATP, but not adenosine A1 receptors; (2) exogenous adenosine and A1 receptor agonist afford the protection, which might be of a potential clinical significance; (3) the endothelial dysfunction is not involved in the mechanism of myocardial stunning in guinea-pig hearts.  相似文献   

20.
The feasibility of intragenerically characterizing bifidobacteria by a comparison of a short region within the recA gene was tested. An approximately 300 bp fragment of the recA gene was PCR-amplified from six species from the genus Bifidobacterium using primers directed to two universally conserved regions of the recA gene. A phylogenetic analysis of the sequenced recA products compared favorably to classification based on the 16S rRNA sequences of the species tested. To apply this rapid methodology to unknown human intestinal bifidobacteria, 46 isolates were randomly chosen from the feces of four subjects and initially characterized by RFLP analysis of a PCR-amplified region of their 16S RNA genes. From a representative of the dominant RFLP family in each of the subjects, the recA segment was PCR-amplified, sequenced and phylogenetically analyzed. All four isolates were found to be related to one another and to B. longum and B. infantis. These results illustrate that the recA gene may be useful for intrageneric phylogenetic analysis as well as for the identification of unknown fecal bifidobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号