首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work characterized emission factors of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs) from on-road sampling of three heavy duty diesel vehicles (HDDVs) under experimental conditions of city and highway driving; idling operation; high (>400 ppm) and low (<5 ppm) sulfur (S) fuels; and high mileage and rebuilt engine testing. Emission factors, homologue profiles, and isomer patterns were compared to determine whether the experimental conditions had an impact on PCDD/F emissions, or whether these conditions were uninfluential in determining a fleet-representative emission factor. For a single HDDV tested under conditions of a high mileage engine, a newly rebuilt engine, and the newly rebuilt engine with low S diesel fuel, emission factors were 0.023 (+/- 0.022), 0.008 (+/- 0.002), and 0.016 (+/- 0.013) ng toxic equivalency (TEQ)/km, respectively. These results may infer some limited condition-specific differences in PCDD/F emissions, but these differences do not appear to have a significant effect on the HDDV emission factor. An older HDDV with mechanical fuel controls resulted in a single test value of 0.164 ng TEQ/km, significantly higher than all other results. Observed differences in emission factors, homologue profiles, and TEQ-related isomer patterns from this on-vehicle sampling and others' tunnel sampling suggest limitations in our present characterization of fleet PCDD/F emissions.  相似文献   

2.
A model of a heavy-duty vehicle driveline with automatic transmission has been developed for estimating engine speed and load from vehicle speed. The model has been validated using emissions tests conducted on three diesel vehicles on a chassis dynamometer and then on the engines removed from the vehicles tested on an engine dynamometer. Nitrogen oxide (NOx) emissions were proportional to work done by the engine. For two of the engines, the NOx/horsepower(HP) ratio was the same on the engine and on the chassis dynamometer tests. For the third engine NOx/HP was significantly higher from the chassis test, possibly due to the use of dual engine maps. The engine certification test generated consistently less particulate matter emissions on a gram per brake horsepower-hour basis than the Heavy Duty Transient and Central Business District chassis cycles. A good linear correlation (r2 = 0.97 and 0.91) was found between rates of HP increase integrated over the test cycle and PM emissions for both the chassis and the engine tests for two of the vehicles. The model also shows how small changes in vehicle speeds can lead to a doubling of load on the engine. Additionally, the model showed that it is impossible to drive a vehicle cycle equivalent to the heavy-duty engine federal test procedure on these vehicles.  相似文献   

3.
The aerodynamic size and chemical composition of individual ultrafine and accumulation mode particle emissions (Da = 50-300 nm) were characterized to determine mass spectral signatures for heavy duty diesel vehicle (HDDV) emissions that can be used for atmospheric source apportionment. As part of this study, six in-use HDDVs were operated on a chassis dynamometer using the heavy heavy-duty diesel truck (HHDDT) five-cycle driving schedule under different simulated weight loads. The exhaust emissions were passed through a dilution/residence system to simulate atmospheric dilution conditions, after which an ultrafine aerosol time-of-flight mass spectrometer (UF-ATOFMS) was used to sample and characterize the HDDV exhaust particles in real-time. This represents the first study where refractory species including elemental carbon and metals are characterized directly in HDDV emissions using on-line mass spectrometry. The top three particle classes observed with the UF-ATOFMS comprise 91% of the total particles sampled and show signatures indicative of a combination of elemental carbon (EC) and engine lubricating oil. In addition to the vehicle make/year, the effects of driving cycle and simulated weight load on exhaust particle size and composition were investigated.  相似文献   

4.
On-road measurements in 2005 of carbon monoxide (CO), hydrocarbons, nitric oxide, nitrogen dioxide, and sulfur dioxide from 1641 individually identified heavy-duty diesel trucks at two locations in Colorado are reported. Carbon monoxide and nitric oxide show increasing emissions with increased altitude. Oxides of nitrogen (NOx) emissions have decreased with more recent model years over the last 10 years but are the same as vehicles that are 20 years old. At the Golden, CO site, there was a statistically significant decrease in fleet emissions of CO and NOx since a similar study in 1999. There was no emission trend for CO or NOx with gross vehicle weight or odometer in units of grams of pollutant per kilogram of fuel consumed. Data from this study suggest that on-road remote sensing can detect illegal, high sulfur fuel use from individual heavy-duty diesel trucks. Ammonia emissions from this study were below the detection limit of the instrument but will be useful as a baseline value for future comparison.  相似文献   

5.
The objective of this study was to begin to quantify the benefits of a smoke opacity-based (SAE J1667 test) inspection and maintenance program. Twenty-six vehicles exhibiting visible smoke emissions were recruited: 14 pre-1991 vehicles and 12 1991 and later model year vehicles. Smoke opacity and regulated pollutant emissions via chassis dynamometer were measured, with testing conducted at 1609 m above sea level. Twenty of the vehicles were then repaired with the goal of lowering visible smoke emission, and the smoke opacity testing and pollutant emissions measurements were repeated. For the pre-1991 vehicles actually repaired, pre-repair smoke opacity averaged 39% and PM averaged 5.6 g/mi. NOx emissions averaged 22.1 g/mi. After repair, the average smoke opacity had declined to 26% and PM declined to 3.3 g/mi, while NOx emissions increased to 30.9 g/mi. For the 1991 and newer vehicles repaired, pre-repair smoke opacity averaged 59% and PM averaged 2.2 g/mi. NOx emissions averaged 12.1 g/mi. After repair, the average opacity had declined to 30% and PM declined to 1.3 g/mi, while NOx increased slightly to 14.4 g/mi. For vehicles failing the California opacity test at >55% for pre-1991 and >40% for 1991 and later model years, the changes in emissions exhibited a high degree of statistical significance. The average cost of repairs was 1088 dollars, and the average is very similar for both the pre-1991 and 1991+ model year groups. Smoke opacity was shown to be a relatively poor predictor of driving cycle PM emissions. Peak CO or peak CO and THC as measured during a snap-acceleration were much better predictors of driving cycle PM emissions.  相似文献   

6.
Hydrogen cyanide exhaust emissions from in-use motor vehicles   总被引:1,自引:0,他引:1  
Motor vehicle exhaust emissions are known to contain hydrogen cyanide (HCN), but emission rate data are scarce and, in the case of idling vehicles, date back over 20 years. For the first time, vehicular HCN exhaust emissions from a modern, in-use fleet at idle have been measured. The 14 tested light duty motor vehicles were operating at idle as these conditions are associated with the highest risk exposure scenarios (i.e., enclosed spaces). Vehicular HCN was detected in 89% of the sampled exhaust streams and did not correlate with instantaneous air-fuel-ratio or with any single, coemitted pollutant. However, a moderate correlation between HCN emissions and the product of carbon monoxide and nitric oxide emissions was observed under cold-start conditions. Fleet average, cold-start, undiluted HCN emissions were 105 +/- 97 ppbV (maximum: 278 ppbV), whereas corresponding emissions from vehicles operating under stabilized conditions were 79 +/- 71 ppbV (maximum: 245 ppbV); mean idle fleet HCN emission rates were 39 +/- 35 and 21 +/- 18 microg-min(-1) for cold-start and stabilized vehicles, respectively. The significance of these results is discussed in terms of HCN emissions inventories in the South Coast Air Basin of California and of health risks due to exposure to vehicular HCN.  相似文献   

7.
This work examines the methodology to sample and measure the number and size of motor vehicle particulate emissions (PM) at subambient temperatures. The study has two principal objectives. The first is to address the following question: which aspects of the particle sampling, dilution, and size measurement process must be made at the vehicle test temperature to obtain an accurate representation of the PM emissions? The second is to perform a preliminary overview of how subambient temperature operation affects PM emissions from the major classes of current model light duty vehicles. The principal findings are the following: (1) The temperature of the particle size instruments, test cell versus room temperature, has little effect on the measurements. (2) Once the engine has warmed, solid particle (soot) mode emissions in the cold test cell are similar to those at room temperature. The first finding simplifies cold temperature emissionstesting because it allows particle sizing instruments to be placed outside the cold test cell and operated at room temperature. The latter is consistent with the expectation that solid particles are formed in the engine and are therefore relatively unaffected by ambient conditions after engine warm-up. Use of cold dilution air in the room-temperature test cell increases the number and size of nuclei particles; however, the effect of dilution airtemperature was inconclusive in the cold test cell.  相似文献   

8.
The objective here is to quantify the variability in emissions of selected light duty gasoline vehicles by routes, time of day, road grade, and vehicle with a focus on the impact of routes and road grade. Field experiments using a portable emission measurement system were conducted under real-world driving cycles. The study area included two origin/destination pairs, each with three alternative routes. Total emissions varied from trip to trip and from route to route due to variations in average speed and travel time. On an average trip basis, the total NO emissions differed by 24% when comparing alternative routes and by 19% when comparing congested travel time with less congested traffic time. Positive road grades were associated with an approximately 20% increase in localized emissions rates, while negative road grades were associated with a similar relative decrease. The average vehicle-specific power based NO modal emission rates differed by more than 2 orders of magnitude when comparing different vehicles. The results demonstrate that alternative routing can significantly impact trip emissions. Furthermore, road grade should be taken into account for localized emissions estimation. Vehicle-specific models are needed to capture episodic effects of emissions for near-road short-term human exposure assessment.  相似文献   

9.
The characteristics of the nucleation mode particles of a Euro IV heavy-duty diesel vehicle exhaust were studied. The NOx and PM emissions of the vehicle were controlled through the use of cooled EGR and high-pressure fuel injection techniques; no exhaust gas after-treatment was used. Particle measurements were performed in vehicle laboratory and on road. Nucleation mode dominated the particle number size distribution in all the tested driving conditions. According to the on-road measurements, the nucleation mode was already formed after 0.7 s residence time in the atmosphere and no significant changes were observed for longer residence times. The nucleation mode was insensitive to the fuel sulfur content, dilution air temperature, and relative humidity. An increase in the dilution ratio decreased the size of the nucleation mode particles. This behavior was observed to be linked to the total hydrocarbon concentration in the diluted sample. In volatility measurements, the nucleation mode particles were observed to have a nonvolatile core with volatile species condensed on it. The results indicate that the nucleation mode particles have a nonvolatile core formed before the dilution process. The core particles have grown because of the condensation of semivolatile material, mainly hydrocarbons, during the dilution.  相似文献   

10.
Traditional emissions inventories for trucks and buses have relied on diesel engine emissions certification data, in units of g/bhp-hr, processed to yield a value in g/mile without a detailed accounting of the vehicle activity. Research has revealed a variety of other options for inventory prediction, including the use of emissions factors based upon instantaneous engine power and instantaneous vehicle behavior. The objective of this paper is to provide tabular factors for use with vehicle activity information to describe the instantaneous emissions from each heavy-duty vehicle considered. To produce these tables, a large body of data was obtained from the research efforts of the West Virginia University-Transportable Heavy Duty Emissions Testing Laboratories (TransLabs). These data were available as continuous records of vehicle speed (hence also acceleration), vehicle power, and emissions of carbon monoxide (CO), oxides of nitrogen (NOx), and hydrocarbons (HC). Data for particulate matter (PM) were available only as a composite value for a whole vehicle test cycle, but using a best effort approach, the PM was distributed in time in proportion to the CO. Emissions values, in g/sec, were binned according to the speed and acceleration of a vehicle, and it was shown that the emissions could be predicted with reasonable accuracy by applying this table to the original speed and acceleration data. The test cycle used was found to have a significant effect on the emissions value predicted. Tables were created for vehicles grouped by type (large transit buses, small transit buses, and tractor-trailers) and by range of model year. These model year ranges were bounded by U.S. national changes in emissions standards. The result is that a suite of tables is available for application to emissions predictions for trucks and buses with known activity, or as modeled by TRANSIMS, a vehicle activity simulation model from Los Alamos National Laboratories.  相似文献   

11.
12.
Emissions from "low emitting" modern vehicles were measured on-road using a Fourier transform infrared (FTIR) on-board emissions measurement system. Twenty vehicles were tested on road and on a chassis dynamometer. A subset of four vehicles was tested on a test track as well as on the dynamometer. Comparison of on-board measurements with laboratory measurements while operating on the dynamometer showed agreement within measurement and test to test variability. Comparison of dynamometer measurements with test track measurements showed some larger differences attributable to track test conditions. On-road and dynamometer tests were conducted on the remaining 16 vehicles, with the on-road testing including freeway, arterial, and residential streets. The on-road testing showed that most of the low emitting vehicles under most operating conditions are operating below certification levels. Most vehicles reached a hot stabilized condition within 60 to 100 s. Hot running emissions were on average very low once the catalyst lights off. For NMHC, the majority of the "certification" emissions occur during the start-up, especially for PZEVs. NOx and CO also showed a high fraction of "certification" emissions during start-up, but also showed emission spikes under hot running conditions, especially during transients.  相似文献   

13.
Wind tunnel measurements and direct tailpipe particulate matter (PM) sampling are utilized to examine how the combination of oxidation catalyst and fuel sulfur content affects the nature and quantity of PM emissions from the exhaust of a light duty diesel truck. When low sulfur fuel (4 ppm) is used, or when high sulfur (350 ppm)fuel is employed without an active catalyst present, a single log-normal distribution of exhaust particles is observed with a number mean diameter in the range of 70-83 nm. In the absence of the oxidation catalyst, the high sulfur level has at most a modest effect on particle emissions (<50%) and a minor effect on particle size (<5%). In combination with the active oxidation catalyst tested, high sulfur fuel can lead to a second, nanoparticle, mode, which appears at approximately 20 nm during high speed operation (70 mph), but is not present at low speed (40 mph). A thermodenuder significantly reduces the nanoparticle mode when set to temperatures above approximately 200 degrees C, suggesting that these particles are semivolatile in nature. Because they are observed only when the catalyst is present and the sulfur level is high, this mode likely originates from the nucleation of sulfates formed over the catalyst, although the composition may also include hydrocarbons.  相似文献   

14.
A nanostructured spinel-type oxide catalyst (CoCr2O4) prepared by solution combustion synthesis was developed and deposited over a SiC wall-flow trap for diesel particulate removal. Bench tests proved that, after soot loading, the developed trap enables a faster and more complete regeneration at 550 degrees C than a commercial Pt-catalyst based trap or a noncatalyzed trap. On the other hand, secondary nanoparticle emission occurs during the fast regeneration promoted by the CoCr2O4-catalyzed trap. This is a likely consequence of oxidative fragmentation of the trapped soot agglomerates. This problem can be resolved by performing a "mild" regeneration at lower temperatures (e.g., 450 degrees C).  相似文献   

15.
Carbonyl emissions from gasoline and diesel motor vehicles   总被引:1,自引:0,他引:1  
Carbonyls from gasoline-powered light-duty vehicles (LDVs) and heavy-duty diesel-powered vehicles (HDDVs) operated on chassis dynamometers were measured by use of an annular denuder-quartz filter-polyurethane foam sampler with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine derivatization and chromatography-mass spectrometry analyses. Two internal standards were utilized based on carbonyl recovery: 4-fluorobenzaldehyde for < C8 carbonyls and 6-fluoro-4-chromanone for > or = C8 compounds. Gas- and particle-phase emissions for 39 aliphatic and 20 aromatic carbonyls ranged from 0.1 to 2000 microg/L of fuel for LDVs and from 1.8 to 27 000 microg/L of fuel for HDDVs. Gas-phase species accounted for 81-95% of the total carbonyls from LDVs and 86-88% from HDDVs. Particulate carbonyls emitted from a HDDV under realistic driving conditions were similar to concentrations measured in a diesel particulate matter (PM) standard reference material. Carbonyls accounted for 19% of particulate organic carbon (POC) emissions from low-emission LDVs and 37% of POC emissions from three-way catalyst-equipped LDVs. This identifies carbonyls as one of the largest classes of compounds in LDV PM emissions. The carbonyl fraction of HDDV POC was lower, 3.3-3.9% depending upon operational conditions. Partitioning analysis indicates the carbonyls had not achieved equilibrium between the gas and particle phases under the dilution factors of 126-584 used in the present study.  相似文献   

16.
17.
UNMIX and Positive Matrix Factorization (PMF) solutions to the Chemical Mass Balance (CMB) equations were applied to chemically speciated PM2.5 measurements from 23 sites in California's San Joaquin Valley to estimate source contributions. Six and seven factors were determined by UNMIX for the low_PM2.5 period (February to October) and high_PM2.5 period (November to January), respectively. PMF resolved eightfactors for each period that corresponded with the UNMIX factors in chemical profiles and time series. These factors are attributed to marine sea salt, fugitive dust, agriculture-dairy, cooking, secondary aerosol, motor vehicle, and residential wood combustion (RWC) emissions, with secondary aerosol and RWC accounting for over 70% of PM2.5 mass during the high_PM2.5 period. A zinc factor was only resolved by PMF. The contribution from motor vehicles was between 10 and 25% with higher percentages occurring in summer. The PMF model was further evaluated by examining (1) site-specific residuals between the measured and calculated concentrations, (2) comparability of motor vehicle and RWC factors against source profiles obtained from recent emission tests, (3) edges in bi-plots of key indicator species, and (4) spatiotemporal variations of the factors' strengths. These evaluations support the compliance with model assumptions and give a higher confidence level to source apportionment results for the high_PM2.5 period.  相似文献   

18.
This study reports the largest data set of on-road, fuel-based mass emissions of ammonia and sulfur dioxide from vehicles of known make, model year, and fuel type. Ammonia is the first pollutant observed for which the emissions decrease with increasing fleet age from 10 to 20 years. The fixed nitrogen emission ratio is 15.0% by mass and 24.7% by mole, larger than current models predict. Diesel fueled vehicles emit more SO2 than gasoline, and unexpectedly, gasoline SO2 emissions decrease continuously with newer model year vehicles.  相似文献   

19.
This paper addresses how current technologies effective for reducing PM emissions of heavy-duty engines may affect the physical characteristics of the particles emitted. Three in-use transit bus configurations were compared in terms of submicron particle size distributions using simultaneous SMPS measurements under two dilution conditions, a minidiluter and the legislated constant volume sampler (CVS). The compressed natural gas (CNG)-fueled and diesel particulate filter (DPF)-equipped diesel configurations are two "green" alternatives to conventional diesel engines. The CNG bus in this study did not have an oxidation catalyst whereas the diesel configurations (with and without particulate filter) employed catalysts. The DPF was a continuously regenerating trap (CRT). Particle size distributions were collected between 6 and 237 nm using 2-minute SMPS scans during idle and 55 mph steady-state cruise operation. Average particle size distributions collected during idle operation of the diesel baseline bus operating on ultralow sulfur fuel showed evidence for nanoparticle growth under CVS dilution conditions relative to the minidiluter. The CRT effectively reduced both accumulation and nuclei mode concentrations by factors of 10-100 except under CVS dilution conditions where nuclei mode concentrations were measured during 55 mph steady-state cruise that exceeded baseline diesel concentrations. The CVS data suggest some variability in trap performance. The CNG bus had accumulation mode concentrations 10-100x lower than the diesel baseline but often displayed large nuclei modes, especially under CVS dilution conditions. Partly this may be explained by the lack of an oxidation catalyst on the CNG, but differences between the minidiluter and CVS size distributions suggest that dilution ratio, temperature-related wall interactions, and differences in tunnel background between the diluters contributed to creating nanoparticle concentrations that sometimes exceeded diesel baseline concentrations when driving under load. The results do not support use of CVS dilution methodology for ultrafine particle sampling, and, despite attention to collection of tunnel blanks in this study, results indicate that a protocol needs to be determined and prescribed for taking into account tunnel blank "emissions" to obtain meaningful comparisons between different technologies. Of critical importance is determining how temperature differences between tunnel blank and test cycle sampling compare in terms of background particle numbers. Total particle number concentrations for the minidiluter sampling point were not significantly different for the two alternative technologies when considering all the steady-cycle data collected. Concentrations ranged from 0.8 to 3 x 10(6) for the baseline bus operating on ultralow sulfur fuel, from 0.5 to 9 x 10(4) for the diesel bus equipped with the CRT filter, and from 1 to 8 x 10(4) particles/cc for the CNG bus.  相似文献   

20.
Size distributions of particulate hopanes, steranes, and polycyclic aromatic hydrocarbons (PAHs) were measured in the exhaust from four heavy-duty diesel vehicles (HDDVs) operated under idle, creep, transient, and two high-speed driving modes. Particulate matter was collected using a chassis dynamometer and a dilution sampling system equipped with cascade impactors and filter samplers. Samples were extracted using organic solvents and analyzed using gas chromatography-mass spectrometry. Size distributions of hopanes and steranes were functions of engine load conditions and vehicle technology. Hopanes and steranes peaked in size ranges larger than 0.18 microm aerodynamic particle diameter under light load conditions and less than 0.10 microm aerodynamic particle diameter under heavier load conditions. The eight hopane size distributions emitted from newertechnology (> 1998) vehicles were unimodal while the four hopane size distributions emitted from older technology vehicles (< 1992) were bimodal. Similar trends between older and newer vehicles were not observed for sterane size distributions. The PAH composition emitted from HDDVs was a function of driving cycle and vehicle technology. Light driving cycles produced quantifiable emissions of 3, 4, 5, and 6 ring PAHs (including coronene). Heavier driving cycles produced only the 3 and 4 ring PAHs in quantifiable amounts. PM1.8 and PM0.1 source profiles constructed using the relative abundance of hopanes and steranes to total organic carbon were functions of vehicle load condition. Increasing load reduced the relative abundance of motor oil tracers in the PM1.8 size fraction and increased the abundance of these tracers in the PM0.1 size fraction. The relative abundances of PAHs in the PM0.1 and PM1.8 size fractions emitted from the oldest vehicle tested (1985 HDDV) were significantly higher than for any other vehicle tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号