首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
为研究HRB600级钢筋高强混凝土柱的偏心受压性能,以推动HRB600级钢筋的工程应用,进行了9根截面尺寸为600 mm×600 mm、混凝土强度等级为C60~C100的高强混凝土柱单调偏心加载试验,其中7根柱的纵筋为HRB600级钢筋,2根柱的纵筋为HRB400级钢筋。分析了钢筋强度、混凝土强度、配箍率及偏心距等参数对钢筋高强混凝土柱偏压性能的影响规律。研究结果表明:HRB600级钢筋高强混凝土柱的破坏特征、挠度曲线、截面应变分布规律与普通钢筋混凝土柱基本一致;大偏心受压状态下,HRB600级钢筋高强混凝土柱受压承载力较HRB400级钢筋高强混凝土柱提高了8.55%,且峰值后的荷载-挠度曲线下降平缓;随着混凝土强度、配箍率和箍筋强度的提高,其压弯承载力均有所提高;采用现行混凝土结构设计规范中的相关公式计算HRB600级钢筋高强混凝土柱的压弯承载力、平均裂缝间距与最大裂缝宽度,具有较好的可靠性。  相似文献   

2.
通过对4片配置HRB600级钢筋以及1片配置HRB400级钢筋的工字形截面剪力墙进行低周反复加载对比试验,考察了配置HRB600级钢筋剪力墙与HRB400级钢筋剪力墙的性能差异;探讨高强钢筋剪力墙墙体配筋率、轴压比对剪力墙抗震抗剪性能的影响。试验结果表明:与HRB400级钢筋剪力墙相比,HRB600级钢筋剪力墙的极限抗剪承载能力略低,达到极限抗剪承载力时墙体中的钢筋也没有达到屈服;但加载后期墙体裂缝宽度更小,变形能力也更好。在试验的基础上,应用有限元分析软件VecTor2,对影响配置高强钢筋低矮剪力墙抗剪承载力的主要因素进行分析,并对HRB600级钢筋剪力墙抗震抗剪承载力计算时钢筋设计强度取值给出建议。  相似文献   

3.
为了解HRB600级钢筋高强混凝土梁的受弯性能,对9根高强钢筋高强混凝土梁和1根HRB400级钢筋梁进行受弯试验,对比分析不同设计变化参数对试验梁的承载力、挠度和裂缝发展变化规律的影响。以试验为基础,探讨了混凝土强度与HRB600级钢筋合理匹配问题,分析国内外现行设计标准对HRB600级钢筋高强混凝土梁承载力、挠度及裂缝宽度计算方法的合理性。研究结果表明:HRB600级钢筋高强混凝土梁的承载力实测值与相关标准推荐算式计算值吻合较好;对于短期最大裂缝宽度,GB 50010—2010《混凝土结构设计规范》的计算误差相对较小;对于挠度,GB 50010—2010的计算值相对于实测值及美国ACI318-08计算值偏小些,可靠性水平相对低些,但对HRB600级钢筋高强混凝土梁的挠度计算仍具有适用性;HRB600级钢筋与C80—C100混凝土匹配效果较佳。  相似文献   

4.
利用ANSYS有限元软件对3片配置HRB600级钢筋和1片HRB400级钢筋的暖砖墙体进行拟静力分析,从墙体的破坏特征、滞回曲线、承载能力、变形能力、刚度退化和耗能能力6个方面来评价墙体的抗震性能,讨论了配置HRB600级钢筋和HRB400级钢筋的2片墙体等强代换后的性能差异,考虑轴压比、剪跨比对配置高强钢筋的暖砖墙体...  相似文献   

5.
为研究HRB600级钢筋高强高性能混凝土柱的抗震性能,进行了6根大尺寸方形截面(600mm×600mm)混凝土柱在高轴压比条件下的低周反复荷载试验,包括2根HRB600级钢筋普通高强混凝土柱和4根HRB600级钢筋钢纤维高强混凝土柱,对比分析了各试件的破坏形态、滞回性能、承载力、刚度退化规律、延性和耗能能力。在试验基础上建立了HRB600级钢筋钢纤维高强混凝土柱的恢复力模型。研究结果表明:钢纤维可以减小高强混凝土柱的裂缝宽度,有效防止混凝土保护层脱落,减小柱的残余变形,提高柱的震后恢复性能;HRB600级钢筋钢纤维高强混凝土柱的变形能力良好,随着钢纤维掺量的增加,高强混凝土柱的位移延性系数逐渐增大;基于试验数据建立的HRB600级钢筋钢纤维高强混凝土柱恢复力模型计算精度良好;该类型柱可较好地满足现行抗震设计规范要求,宜于推广应用。  相似文献   

6.
《工业建筑》2017,(11):77-83
为了解HRB600级钢筋高强混凝土柱的轴心受压力学性能,对5根截面尺寸为600 mm×600 mm、不同设计参数的高强混凝土柱进行轴压试验,其中4根柱的纵筋为HRB600级钢筋,1根柱的纵筋为HRB400级钢筋。在试验基础上,采用非线性有限元模型进行数值模拟,探讨混凝土强度、配箍率及箍筋强度等设计变化参数对HRB600级钢筋高强混凝土柱轴压性能的影响规律,对中、美、日三国《混凝土结构设计规范》中轴压承载力计算法的适用性进行验证。研究结果表明:随着混凝土强度等级的提高,HRB600级钢筋高强混凝土柱的承载力明显提高,轴压刚度有所提高,荷载-变形曲线下降段变陡;随着配箍率的增大,柱的承载力、延性有所提高,轴压刚度略有提高;随着箍筋强度的提高,柱的承载力、轴压刚度变化不大,但其峰值后的性能改善明显;当HRB600级钢筋的抗压强度值取500 MPa时,按中、美、日三国《混凝土结构设计规范》推荐的承载力计算式都有足够的安全储备。  相似文献   

7.
为研究HRB600级钢筋高强混凝土柱的抗震性能,进行9根截面尺寸为600mm×600mm的高强混凝土柱在工程实际轴压比条件下的低周反复荷载试验,主要设计变化参数为钢筋等级、箍筋间距、混凝土强度和轴压比。对比分析各试件的破坏形态、滞回性能、承载力、延性、刚度退化和耗能能力,基于试验建立HRB600级钢筋高强混凝土柱的恢复力模型。结果表明:各试件的破坏形态相似,均为延性弯曲破坏,柱底出现塑性铰,纵筋屈曲,混凝土保护层脱落;HRB600级钢筋高强混凝土柱不仅具有较好的滞回性能以及变形与耗能能力,且震后可恢复性能相对较好;高强混凝土柱设计中,HRB600级钢筋与C80混凝土匹配应用效果较优;合理配置箍筋,可使HRB600级钢筋高强混凝土柱在高轴压比条件下的延性系数大于4.0;文章基于足尺构件试验建立的恢复力模型,以期可为相关工程结构抗震弹塑性分析提供参考。  相似文献   

8.
HRB600E钢筋是一种新型高强度钢筋,为改善矩形柱抗震性能并推广HRB600E级高强钢筋的应用,通过对6个配置HRB600E钢筋的不同轴压比、不同钢筋强度和纵筋配筋率的混凝土矩形柱进行低周往复荷载试验,得到试件的滞回曲线、骨架曲线和纵筋应变曲线。对比分析高强钢筋混凝土柱的破坏特征、滞回特性、骨架曲线、刚度退化等抗震性能指标。研究结果表明:配置HRB600E高强钢筋的混凝土柱的破坏特征与配置普通钢筋的混凝土柱相似;通过减小轴压比或增加钢筋强度均能改善配置HRB600E高强钢筋试件的滞回特性、减缓刚度退化、提高试件的抗震性能;配置高强钢筋的构件与高强混凝土配合使用时受力性能更优。  相似文献   

9.
通过对32根HRB600钢筋试件和6根HTRB600钢筋试件的拉伸试验,确定了600 MPa级钢筋的极限强度值和屈服强度值。根据拉伸试验的结果可知:HTRB600钢筋的力学性能尚不稳定,需进一步试验研究。通过12根HTRB600钢筋混凝土梁和8根HRB600钢筋混凝土梁的受弯试验,研究了配置600 MPa级钢筋混凝土梁的受弯性能。根据试验结果可知:配置600 MPa级钢筋混凝土梁,仍可以在平截面假定的基础上进行受弯承载力的分析。通过对比分析发现:配置HRB600钢筋混凝土梁的钢筋强度能够充分发挥,且具有良好的延性,而配置HTRB600钢筋的混凝土梁钢筋的强度不能充分发挥,因此计算得到的承载力应适当折减。  相似文献   

10.
张建伟  刘娟  冯曹杰  曹万林 《建筑结构》2021,51(4):71-76,32
为了解HRB600级钢筋钢纤维高强混凝土柱的受压性能,推动高强钢筋和高强混凝土的工程应用,进行了 3根混凝土强度等级为C80、截面尺寸为600mmx600mm、不同偏心距的HRB600级钢筋钢纤维高强混凝土柱的受压试验,分析了其破坏特征、变形能力和材料应变发展规律,并与相应的HRB600级钢筋高强混凝土柱受压试验结果进行了比较.试验结果表明:在高强混凝土中掺入适量钢纤维,可以使柱的裂缝宽度明显减小、裂缝间距缩短,降低柱的损伤程度,提高其延性和变形能力,增强HRB600级钢筋与高强混凝土的协同工作性能,使两种材料的强度优势得以充分发挥,获得高性能的柱构件.  相似文献   

11.
HRB500级钢筋混凝土梁裂缝与变形性能试验研究   总被引:2,自引:0,他引:2  
通过4根足尺的钢筋混凝土简支梁(3根采用HRB500级钢筋、1根采用HRB335级钢筋)受弯性能试验,研究HRB500级钢筋混凝土梁的受弯性能和裂缝开展规律。试验结果表明,短期荷载下的HRB500级钢筋混凝土梁具有良好的受弯性能;采用大直径(32mm)HRB500级钢筋配筋的混凝土简支梁的最大裂缝宽度实测值小于《混凝土结构设计规范》(GB50010—2002)公式的预测值,但大于混凝土规范规定的最大裂缝宽度容许值。试验梁的挠度、裂缝间距和最大裂缝宽度与钢筋应力、钢筋直径和配筋率等因素的关系基本上可用现有模型预测。为满足正常使用极限状态的要求,建议对正常使用极限状态的荷载代表值和规范公式的相关参数进行适当调整。  相似文献   

12.
为促进高性能绿色建筑结构发展,推动高强钢筋和中高强再生混凝土的工程应用,研发了边缘构件采用环筋扣合连接方式且配置高强纵筋的装配式中高强再生混凝土剪力墙,对6个剪跨比为2.2的装配式混凝土剪力墙进行了低周反复荷载试验。分析了不同再生粗骨料取代率、混凝土强度、边缘暗柱纵筋强度及搭接位置对装配式再生混凝土剪力墙的破坏形态、滞回性能、承载力、延性、刚度退化规律、耗能能力等抗震性能指标以及可恢复性能的影响。试验结果表明:边缘构件配置高强钢筋的装配式中高强再生混凝土剪力墙的破坏形态以弯曲破坏为主;再生粗骨料取代率对装配式中高强再生混凝土剪力墙的承载力、延性和耗能能力影响不大,各剪力墙均具有较好的抗震性能;边缘暗柱采用HRB600纵筋可有效提高装配式中高强再生混凝土剪力墙的承载力、耗能能力和可恢复性能;边缘暗柱纵筋在剪力墙底部塑性铰区搭接,会导致装配式中高强再生混凝土剪力墙的延性明显下降。给出了边缘配置HRB600纵筋的装配式中高强再生混凝土剪力墙水平承载力计算式,计算结果表明普通混凝土剪力墙的水平承载力计算模型同样适用于该装配式剪力墙结构。  相似文献   

13.
通过对6根HRB600钢筋、1根HRB500钢筋混凝土短柱和2根素混凝土短柱进行轴心受压试验,分析不同配筋率、混凝土强度、钢筋强度、长细比对钢筋混凝土柱轴压性能的影响,提出HRB600钢筋的抗压强度设计值,分析GB 50010-2010《混凝土结构设计规范》中关于轴心受压承载力计算公式的适用性。研究结果表明:随着纵筋配筋率、钢筋强度和混凝土强度的提高,轴压短柱的峰值荷载增大;轴压短柱峰值应变随混凝土强度提高而减小,随钢筋强度提高而略有增大,纵筋配筋率和长细比对峰值应变影响较小;HRB600钢筋抗压强度设计值取为500 MPa,HRB600钢筋混凝土短柱与普通钢筋混凝土短柱的受力性能相似,轴心受压承载力可以按照GB 50010-2010《混凝土结构设计规范》中规定的受压承载力公式进行计算,具有足够的安全储备。  相似文献   

14.
通过对16根500MPa细晶粒钢筋、1根400MPa及1根600MPa钢筋作箍筋的混凝土梁在集中荷载作用下的试验,观测不同混凝土强度、不同剪跨比、不同箍筋强度、不同配箍率、不同截面尺寸、不同截面形状等条件下试件的裂缝、挠度、承载力及破坏形态;并将实测值与有关公式的计算值进行比较。试验结果表明,构件的斜截面承载力仍可按现行《混凝土结构设计规范》(GB50010—2010)的相关公式进行计算,并有足够的安全储备。  相似文献   

15.
500级高强钢筋混凝土梁裂缝宽度试验及计算方法探讨   总被引:2,自引:0,他引:2  
通过8根HRB500级高强钢筋混凝土梁以及2根普通钢筋混凝土梁的受弯试验,对比分析试验梁的裂缝分布、平均裂缝宽度及短期最大裂缝宽度的变化特性。结合已有试验结果,对56根500级钢筋混凝土梁的受弯开裂特性进行综合研究,结果表明:试验梁的平均裂缝间距与规范GB 50010—2002公式的计算值符合得较好,而短期最大裂缝宽度计算值则大于实测值,尤其是当钢筋应力超过300N/mm2的情况。鉴于此,在参照国外相关规范的基础上,对该类梁的裂缝宽度计算提出了两种修正建议:①适当调整短期最大裂缝宽度的保证率,取90%的保证率可使计算平均值降低10%左右;②调整裂缝截面处钢筋应力的计算值,具体有两种途径,一是取准永久荷载组合进行计算,二是将钢筋应力超过某一值后取为定值,若将该应力定值取为300N/mm2,裂缝宽度比值的均值为1.063,变异系数为0.176,计算效果非常理想。  相似文献   

16.
通过对7根HRBF500钢筋混凝土偏心受压柱和1根HRB400钢筋混凝土偏心受压柱的试验,对500MPa细晶粒钢筋混凝土偏压柱性能有了初步了解.分析了荷载-钢筋应变、混凝土应变曲线以及破坏形态的特点.试验研究表明:500 MPa细晶粒钢筋和普通的HRB400钢筋一样,当作为受力主筋用于受压构件时,其强度能得到充分的利用.在试验和理论分析的基础上,提出了HRBF500钢筋在混凝土柱中的强度设计取值为450 MPa和受压承载力计算公式的建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号