首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
微波法煤基活性炭的制备及其电化学性能研究   总被引:1,自引:1,他引:0  
以内蒙古优质褐煤为原料,KOH为活化剂,采用微波加热活化法制备超级电容器用活性炭,利用低温氮气吸附及恒流充放电、循环伏安等方法测定活性炭的孔结构及其用作电极材料的电化学性能,并与日本商业化超级电容器用活性炭在结构及性能方面进行对比分析。结果表明,在碱炭比为3,微波活化时间为20min的条件下,可制备出比表面积达2593m2/g、总孔容达1.685cm3/g、孔径主要分布在0.5~10nm之间、中孔率达67.3%、平均孔径为2.61nm的优质活性炭。该活性炭用作超级电容器电极材料在3mol/L KOH电解液中具有优异的电化学性能,电流密度由50mA/g提高到10A/g时,其比电容由346F/g降低到273F/g,显示出良好的功率特性,经1000次循环后,比电容保持率为93.2%。与商业活性炭相比,微波法活性炭的性能更加优良。  相似文献   

2.
二氧化锰(MnO2)作为一种重要的无机功能材料,因成本低、来源广泛、电化学性能优异及对环境友好且理论比电容高等优势,在电化学电容器电极材料的研究中有巨大的应用潜力,已成为超级电容器电极材料的研究热点。目前,制备二氧化锰的方法多样,常用的方法有:固相法、水热法、溶胶凝胶法、液相共沉淀法、电化学沉积法等。且因二氧化锰具有比表面积大、循环稳定性好等优势,用其作为电极材料更易于工业化生产,具有较大的市场价值。本文主要综述了非晶态及晶态二氧化锰电极的制备方法及其用于超级电容器的研究进展,并对其储能机理、温度对其微观结构(表面积)和残余结构水等因素的影响进行了分析。  相似文献   

3.
为应对环境污染造成的气候变化,中国提出碳达峰、碳中和目标。为实现这一目标,有必要使用新工艺、新设备来改善传统能源造成的温室气体排放。作为介于传统电容器和化学电源之间的一种新型储能器件,超级电容器具有功率密度高、循环寿命长、温度范围宽和绿色安全等优点,已经广泛应用到电子设备、智慧电网和储能等领域,有效地起到了碳减排作用。电极材料和电解液是构成超级电容器的主要组成部分,也是影响超级电容器性能的关键因素。综述了超级电容器在电极材料及电解液方面的研究进展,并详细介绍了对它们的优缺点,展望了其未来发展趋势。  相似文献   

4.
以氧化石墨烯为原料,通过水热反应和高温焙烧过程制备了三维石墨烯柱状体材料。采用机械力学测试方法分析三维石墨烯的可压缩性能,将其作为超级电容器的电极材料测试其电化学性能。结果表明,三维石墨烯呈多孔网状结构,具有良好的可压缩性能和机械性能。电极片厚度为2 mm,铝塑外包尺寸为5 cm×6 cm的对称超级电容器在电流密度为0.1 A/g下比电容为175 F/g,在电流密度为1 A/g下充放电循环10 000次后比电容保持率为81.9%。在加载不同大小压力压缩状态下,其保持了良好的电容性能。  相似文献   

5.
本研究以氧化石墨烯分散液(GO)和硝酸镍(Ni(NO3)2·6H2O)为前驱体, 通过一步水热法制备自支撑三维还原氧化石墨烯/NiO复合电极材料(3D rGO/NiO)。用XRD和SEM等分析结果表明, 纳米NiO颗粒均匀分散在三维多孔石墨烯表面。当GO与Ni(NO3)2·6H2O质量比为1 : 4时, 3D rGO/NiO在电流密度为1 A·g-1 下比电容可达1208.8 F·g-1; 当电流密度从0.2 A·g-1增加到10 A·g-1时, 复合电极材料电容保持率高于72.6%; 在电流密度为10 A·g-1下进行恒流充放电循环测试10000次后, 其比电容仍然保持为初始比电容的93%, 表明该复合电极材料具有良好的倍率性能和循环稳定性能。3D rGO/NiO复合电极材料具有比纯NiO或rGO更优异的电化学性能。  相似文献   

6.
电化学电容器具有良好的脉冲充放电性能和大容量储能性能,是一种介于常规电容器和蓄电池之间的新型储能装置,应用前景非常广泛.目前用于制备电化学电容器的极化电极材料主要分为碳素材料、金属氧化物材料和导电聚合物材料.本文综述了电化学电容器的储能原理、材料的制备与电化学性质,并介绍了上述三类电化学电容器材料的最新研究进展.  相似文献   

7.
采用从褐煤中提取的腐植酸和天然石墨制得的氧化石墨烯为原料,通过水合肼加热还原法合成腐植酸/石墨烯复合材料。利用XRD、Raman、SEM和电化学测试对复合材料的形貌、微观结构和电化学性能进行表征。结果表明腐植酸均匀分散在石墨烯片层间形成夹心多孔骨架结构,可缩短电解质传播和运输路径。复合材料HRGO-0.1在电流密度为50 mA/g时表现出高的比电容(185 F/g),低的电阻率,良好的电容倍率。  相似文献   

8.
煤基活性炭电极材料的改性方法研究现状   总被引:1,自引:0,他引:1  
煤基活性炭是超级电容器电极的主要材料之一,分析了煤基活性炭的性质与超级电容器性能的关系,介绍了活性炭的表面结构,论述了活性炭表面化学性质的改性方法的研究进展,认为多种方法复合改性是煤基活性炭改性的发展方向,并阐述了电极用活性炭材料的应用趋势。  相似文献   

9.
超级电容器是一种高性能的能量存储设备,因具有高功率密度、快速的充放电速率、高安全性能、优异的循环稳定性和较宽的工作温度范围等优点备受人们关注和青睐,并在清洁能源、电动汽车、无线通信、航空航天、军事和消费电子等领域得到了广泛的应用。电极材料是决定超级电容器储能性能的关键因素之一,开发新型、高效电极材料的已成为国内外研究的热点。传统电极材料经过长期的发展虽取得了一些技术革新和突破,但仍存在碳基电极容量不大、过渡金属化合物导电性不高、导电聚合物循环稳定性不足等缺点。石墨烯是一种由单层碳原子构成的碳纳米材料,具有优异的物理化学性能,是超级电容器电极材料的新宠。三维石墨烯不仅能保留单层或少数层石墨烯独特的物理化学性质,而且具有低密度、多孔性、高度连通结构和微反应环境等特性,在超级电容器领域备受关注,比石墨烯具有更加广泛的应用前景。目前,三维石墨烯的制备方法主要有湿化学技术、CVD技术和3D打印技术等。其中,3D打印技术凭借其在空间构型设计和化学组成优化方面的独特优势,在生物医药和能源器件等领域迅速发展。基于3D打印的石墨烯基材料不仅具有良好的孔道分布和优异的力学性能,而且其独特的3D打印结构还能...  相似文献   

10.
滕柳梅 《材料导报》2016,30(Z1):197-200, 208
石墨烯因具有独特的二维晶体结构而具备优异的电学、光学、力学、热学等性能,成为全世界科研工作者研究的热点。介绍了超级电容器储能原理,对石墨烯在超级电容器中的应用和其复合电极材料的发展进行了综述和展望。  相似文献   

11.
综述了无机纳米抗菌剂及其载体的最近研究进展。无机纳米抗菌剂主要包括光催化型和金属型,抗菌剂载体主要有沸石、二氧化硅、磷酸盐系、壳聚糖、脂质体和聚合物等。具体介绍了金属型和光催化型这两类无机纳米抗菌剂的抗菌机理、抗菌特性及研究现状等,并概述了当下无机纳米抗菌剂载体的主要种类和特点,同时对无机纳米抗菌剂的研究方向进行了展望...  相似文献   

12.
以4A分子筛(4A)和改进Hummers法制备的氧化石墨烯凝胶(GO)为原料, 按一定质量比进行混合超声分散, 以混合分散液为前驱体煅烧制备了氧化还原石墨烯(RGO)包覆的三维复合4A/RGO电极材料。采用X射线衍射(XRD)、拉曼光谱(Raman)、孔径分析、扫描电子显微镜(SEM)和电化学测试等方法研究了复合材料的结构、形貌及超级电容性能。测试结果表明, 4A均匀地穿插在RGO片层中, 阻止了RGO片层之间相互堆积, 而RGO片层之间相互链接, 形成三维空间导电网络, 提高了复合电极材料的导电性。当GO与4A质量比为1:6时, 复合材料在4 A/g电流密度下比电容可达450 F/g, 在此电流密度下循环800次后, 其比容量保持率为85.7%, 表现出良好的倍率性能和循环稳定性。该4A/RGO复合电极材料超级电容性能优于纯4A或RGO, 可归因于4A和RGO之间的协同效应。  相似文献   

13.
以碳纳米管和氧化石墨烯为原料,二者按5∶3混合超声分散再高温还原制备碳纳米管/石墨烯/天然石墨(CNTs/rGO/NG)锂离子复合负极材料。采用扫描电镜(SEM)、X射线衍射(XRD)、红外光谱(FTIR)和电化学测试等分析技术对复合材料的形貌、结构、电化学进行表征。结果表明:石墨烯和碳纳米管在天然石墨表面形成三维立体网络结构。与纯天然石墨相比,CNTs/rGO/NG复合材料具有良好的倍率性能和循环寿命,在0.1C时首次放电比容量为479mAh/g,可逆容量达473mAh/g,循环100次后容量为439.5mAh/g,容量保持率为92%,在0.5,1,5C不同电流倍率时容量依次为457,433,394mAh/g。  相似文献   

14.
超级电容器用活性炭电极材料的研究进展   总被引:3,自引:3,他引:0  
活性炭因具有制备简单、成本低、比表面积大、导电性好以及化学稳定性高等特点,作为超级电容器电极材料已得到广泛应用.论述了活性炭电极超级电容器的工作原理及活性炭物化性质对超级电容器电化学性能的影响,介绍了活性炭电极材料的最新研究进展,展望了其应用前景,指出寻找新炭源及活化技术、探索活性炭孔结构和表面性质的有效控制手段、开发活性炭复合材料等是该领域今后研究的重点方向.  相似文献   

15.
以自制聚苯胺水凝胶和氧化石墨烯为原料采用原位聚合法和溶液灌注法制备三维多孔结构的聚苯胺/氧化石墨烯复合材料,然后在氢碘酸的还原下制备聚苯胺/石墨烯复合材料。采用红外光谱法、场发射扫描电子显微镜和热重分析法对制备的复合材料的结构、形貌和组成进行表征,并采用三电极测试方式对其电化学性能进行测试。结果表明,氧化石墨烯的掺入能有效防止聚苯胺和氧化石墨烯的团聚和堆叠问题,获得了具有良好三维多孔结构的聚苯胺/氧化石墨烯复合物;聚苯胺/氧化石墨烯复合材料被氢碘酸还原后,得到的聚苯胺/石墨烯复合材料的热稳定性有所降低,但其比电容和导电性等有了很大的提高,在电流密度为0.5 A/g时,PANI/GO和PANI/r GO的比电容分别为240.38 F/g和321.91F/g。  相似文献   

16.
目的设计一个低成本条件下成熟高效制备石墨烯-聚苯胺-银基复合电极材料的工艺路线。方法研究石墨烯的制备工艺以及石墨烯与聚苯胺、银粒子的复合效果,将石墨烯与苯胺、银粒子通过原位聚合的方法制得石墨烯-聚苯胺-银复合材料。利用扫描电子显微镜(SEM)、傅里叶变换-红外光谱(FT-IR)、X射线衍射(XRD)、循环伏安法(CV)和恒电流充放电法(GCD)对石墨烯和石墨烯-聚苯胺-银复合材料的形貌、结构和电化学性能进行分析研究。结果 SEM、FT-IR、XRD等测试表明,聚苯胺类衍生物、石墨烯以及银粒子在整个复合材料中共存。结论 CV和GCD的测试结果表明复合材料有优良的电化学性能,比电容最高可达到293 F/g。  相似文献   

17.
以河南永城无烟煤为原料、KOH为活化剂制备了高比表面积的煤基活性炭,采用低温N_2吸附法对活性炭的比表面积、孔容及孔径分布进行了表征,并对其用作双电层电容器电极材料的电化学性能进行了系统测试.在KOH与煤的质量比为4:1、活化温度为800℃、活化时间为1h的条件下制备出的活性炭其比表面积高达3224m~2/g,总孔容达1.76cm~3/g,中孔率为57.95%.该活性炭电极在3mol/L KOH电解液中的比电容高达324F/g,且具有良好的循环性能,当电流密度为40mA/g时,经1000次循环后,比电容保持率超过92%,且其漏电流很小.  相似文献   

18.
非对称型超级电容器作为超级电容器的新生代,具有比能量高、比功率大和循环性能良好等优点。综述了非对称型超级电容器的工作原理及发展现状,认为廉价易得、性能优良的金属氧化物、导电聚合物等与高比表面积碳材料的复合与匹配,不同孔隙结构的碳材料、水合金属氧化物等作为电容器正负极,可能是非对称超级电容器的研发方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号