首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 2 毫秒
1.
Abou El-Maaty M. Aly  A. Nasr 《半导体学报》2015,36(4):042001-042001-6
A mathematical model of quantum dot intermediate band solar cells (QDIBSCs) is investigated using two intermediate bands (IBs). These two IBs arise from the quantum dot (QD) semiconductor material within the bandgap energy. Some parameters such as the width of the QD (WQD) and the barrier thickness or the inter-dot distances between the QDs (BT) are studied to show their influence on the performance of the QDIBSC. The time-independent Schrödinger equation, which is solved using the Kronig-Penney model, is used to determine the position and bandwidth energies of the two IBs. In our proposed model, the cubic shape of the QDs from InAs0.9N0.1 and the barrier or host semiconductor material from GaAs0.98Sb0.02 are utilized. It is shown from the results obtained that changing the parameters WQD and BT has more influence on the bandwidth energy for the first IB, Δ1, than in the case of the second IB, Δ2. The optimum power conversion efficiencies (PCEs) of the QDIBSCs with two IBs for the model under study are 58.01% and 73.55% at 1 Sun and maximum solar concentration, respectively. One can observe that, in the case of the two IBs, an improvement of the PCE is achieved.  相似文献   

2.
SiNx/SiOx passivation and double side P-diffusion gettering treatment have been used for the fabrication of c-Si solar cells. The solar cells fabricated have high open circuit voltage and short circuit current after the double P-diffusion treatment. In addition to better surface passivation effect, SiNx/SiOx layer has lower reflectivity in long wavelength range than conventional SiNx film. As a consequence, such solar cells exhibit higher conversion efficiency and better internal quantum efficiency, compared with conventional c-Si solar cells.  相似文献   

3.
Inefficient light absorption and inefficient charge separation are considered as two major impediments for the efficiency improvement in bulk heterojunction organic solar cells (BHJ OSCs). In this work, we report the simultaneous role of modified electron transport layer (ETL) and photoactive layers on the performance of poly (3-hexylthiophene), [6, 6]-phenyl C61-butyric acid methyl ester (P3HT: PCBM) BHJ OSCs. To modify the ETL, composite of reduced graphene oxide (rGO) (0.4 wt %) and ZnO nanoparticles (NPs) was used, which resulted in efficiency enhancement from 3.13 to 3.81%, as compared to a value of 3.13% when only ZnO was used. Thereafter, to improve upon the optical absorption properties, the photoactive layer is modified by embedding nanoparticles and nanorods of Ag and Au into it. The size of Ag and Au nanoparticles were chosen to be 50 nm while the dimensions of Ag and Au nanorods were so controlled to obtain length of approx. 50 nm and width of ∼10 nm. All the devices were fabricated in inverted geometry and 20 wt% nanostructures embedded devices showed the best results. For Ag and Au NPs embedded devices, the maximum power conversion efficiency was found to be 4.21% and 4.44%, respectively. On the other hand, for Ag and Au NRs embedded devices, the maximum efficiency was 4.37% and 4.85%, respectively. For comparison, the control devices where no nanostructures were embedded, which shows efficiency of 3.81%. Therefore, an overall enhancement in efficiency was nearly 1.21 and 1.1, 1.16, 1.14, 1.27 fold after modifying ETL as well as the active layer. The reasons for performance improvement were ascribed to better charge extraction properties of ETL, enhanced light absorption due to localized surface plasmon resonance (LSPR) and efficient light scattering by the nanostructures and improved global mobilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号