首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal SiO2 films have been implanted with Si+ ions using double-energy implants (200 + 100 keV) at a substrate temperature of about −20°C to total doses in the range 1.6 × 1016−1.6 × 1017 cm−2 followed by short-time thermal processing, in order to form a Si nanostructure capable of yielding blue photoluminescence (PL). The intensity and the peak position of the PL band have been investigated as a function of ion dose, manner of heat treatment, anneal time and anneal temperature. For the formation of blue PL emitting centres, optimum processing conditions in terms of excess Si concentration and overall thermal budget are mandatory. The nature of the observed blue emission is discussed.  相似文献   

2.
Electron Paramagnetic Resonance (EPR) measurements have been made to investigate the build up of damage in silicon in relaxed crystalline Si1−xGex (x = 0.04, 0.13, 0.24, 0.36) and in 6H-SiC as a result of increasing the ion dose from low levels (1012 cm−2) up to values (1015 cm−2) sufficient to produce an amorphous layer. Si, Si1−xGex (x ≠ 0) and SiC were implanted at room temperature with 1.5 MeV Si, 2 MeV Si and 0.2 MeV Ge ions respectively. A comparison is made between the ways in which the type and population of paramagnetic defects depend on ion dose for each material.  相似文献   

3.
Silicon-carbon alloys were formed by multiple energy implantation of C+ ions in silicon and in Silicon on Sapphire (SOS). The ion fluence ranged between 5 × 1016 − 3 × 1017 ions/cm2 and the energy between 10–30 keV in order to obtain constant carbon concentration into a depth of 100 nm. The carbon atomic fraction (x) was in the range 0.22–0.59 as tested by Rutherford backscattering spectrometry (RBS). Thermal annealing of the implanted films induced a transition from amorphous to a polycrystalline structure at temperatures above 850°C as detected by Infrared spectrometry (IR) in the wavenumber range 600–900 cm−1. The optical energy gap and the intensity of the infrared signal after annealing at 1000°C depended on the film composition: they both increased linearly with carbon concentration reaching a maximum at the stoichiometric composition (x = 0.5). At higher carbon concentration the IR intensity saturated and the optical energy gap decreased from the maximum value of 2.2 to 1.8 eV. The behaviour at the high carbon content has been related to the formation of graphitic clusters as detected by Raman spectroscopy.  相似文献   

4.
In recent years, single-crystal SiC has become an important electronic material due to its excellent physical and chemical properties. The present paper reports a study of the defect reduction and recrysallisation during annealing of Ge+-implanted 6H-SiC. Implants have been performed at 200 keV with doses of 1 × 1014 and 1 × 1015 cm−2. Furnace annealing has been carried out at temperatures of 500, 950 and 1500°C. Three analytical techniques including Rutherford backscattering spectrometry in conjunction with channelling (RBS/C), positron annihilation spectroscopy (PAS) and cross-sectional transmission electron microscopy (XTEM) have been employed for sample characterisation. It has been shown that damage removal is more complicated than in ion-implanted Si. The recrystallisation of amorphised SiC layers has been found to be unsatisfactory for temperatures up to 1500°C. The use of ion-beam-induced epitaxial crystallisation (IBIEC) has been more successful as lattice regrowth, although still imperfect, has been observed to occur at a temperature as low as 500°C.  相似文献   

5.
Ceramics are considered as most promising materials for conditioning of long-lived radionuclides because of their outstanding durability for long term. The Japan Atomic Energy Research Institute (JAERI) has developed ceramic waste forms, e.g. Synroc and zirconia-based ceramics, for the actinide-rich wastes arising from partitioning and transmutation processes. In the present study, -decay damage effects on the density and leaching behavior of perovskite (one of three main minerals forming Synroc) were investigated by an accelerated experiment using the actinide doping technique. A decrease in density of Cm-doped perovskite reached 1.3 % at a dose of 9 × 1017 -decays·g−1. The leach rates (MCC-1 leach test inpH 2 solution at 90°C for 2 months) of perovskite specimens with accumulated doses of 1.6 × 1017, 4.0 × 1017 and 8.3 × 1017 -decays·g−1 were 1.7, 2.3 and 3.0 μ·m−2·day−1, respectively. Application of zirconia- and alumina-based ceramics for incorporating actinides was also investigated by the experiments using non-radioactive elements (Ce and Nd) with an emphasis on crystallographic phase stability and chemical durability. The yttria-stabilized zirconia was stable crystallographically in the wide ranges of Ce and/ or Nd content and had excellent chemical durability.  相似文献   

6.
The mode of recrystallization of 6H-SiC implanted at 200 keV with a dose of 1 × 1015 Ge+ cm−2 and subsequently annealed at 1500°C for 10 min, was studied by combined cross-section and planar view transmission electron microscopy techniques. The type of defects developed during recrystallization and their role in the 6H to 3C (cubic) transformation of the recrystallized zone is discussed. The instability of the 6H-SiC polytype and the domination of the 3C-SiC is attributed to the inability to apply the step-controlled growth mechanism, which is essential for the growth of 6H-SiC, in the amorphous zone.  相似文献   

7.
Au+ ion implantation with fluences from 1 × 1014 to 3 × 1016 cm−2 into 12CaO · 7Al2O3 (C12A7) single crystals was carried out at a sample temperature of 600 °C. The implanted sample with the fluence of 1 × 1015 cm−2 exhibited photoluminescence (PL) bands peaking at 3.1 and 2.3 eV at 150 K when excited by He–Cd laser (325 nm). This was the first observation of PL from C12A7. These two PL bands are possibly due to intra-ionic transitions of an Au ion having the electronic configuration of 6s2, judged from their similarities to those reported on Au ions in alkali halides. However, when the concentration of the implanted Au ions exceeded the theoretical maximum value of anions encaged in C12A7 (2.3 × 1021 cm−3), surface plasmon absorption appeared in the optical absorption spectrum, suggesting Au colloids were formed at such high fluences. These observations indicate that negative gold ions are formed in the cages of C12A7 by the Au+ implantation if an appropriate fluence is chosen.  相似文献   

8.
To investigate the nonlinear dose dependence of the thickness of the recrystallized layer during ion beam induced epitaxial recrystallization at amorphous/crystalline interfaces GaAs samples were irradiated with 1.0 MeV Ar+, 1.6 MeV Ar+ or 2.5 MeV Kr+ ions using a dose rate of 1.4 × 1012 cm−2 s−1 at temperatures between 50°C and 180°C. It has been found that the thickness of the recrystallized layer reaches a maximum value at Tmax = 90°C and 135°C for the Ar+ and Kr+ implantations, respectively. This means that the crystallization rate deviates from an Arrhenius dependence due to ion beam induced nucleation and growth within the remaining amorphous layer. The size of the crystallites depends on the implantation dose. This nucleation and growth of the crystallites disturbes and at least blocks the interface movement because the remaining surface layer becomes polycrystalline. Choosing temperatures sufficiently below Tmax the thickness of the recrystallized layer increases linearly with the implantation dose indicating that the irradiation temperature is too low for ion induced nucleation.  相似文献   

9.
The release of tritium from irradiated boron carbide in a pure Ar atmosphere was investigated between 500 and 900°C. The sintered B4C samples with densities between 75 and 95% of the theoretical density were irradiated with reactor neutrons with total neutron doses up to 5 × 1020/cm2. Effective diffusion coefficients, Deff, were derived from the release data using the model “diffusion out of a sphere”. Deff decreases by about 3 orders of magnitude with increasing total neutron dose, levels off at about 1018n/cm2 and increases at very high doses ( > 1020 n/cm2). The decrease in the tritium mobility is attributed to the radiation defects formed in the B4C. The activation energy of 210 ± 30 kJ/mol for the tritium diffusion in the irradiated B4C is much higher than the value found for unirradiated material. Deff depends also very strongly on the density of the sintered material.  相似文献   

10.
Transient enhanced diffusion (TED) and electrical activation after nonamorphizing Si implantations into lightly B-doped Si multilayers shows two distinct timescales, each related to a different class of interstitial defect. At 700°C, ultrafast TED occurs within the first 15 s with a B diffusivity enhancement of > 2 × 105. Immobile clustered B is present at low concentration levels after the ultrafast transient and persists for an extended period ( 102–103 s). The later phase of TED exhibits a near-constant diffusivity enhancement of ≈ 1 × 104, consistent with interstitial injection controlled by dissolving {113} interstitial clusters. The relative contributions of the ultrafast and regular TED regimes to the final diffusive broadening of the B profile depends on the proportion of interstitials that escape capture by {113} clusters growing within the implant damage region upon annealing. Our results explain the ultrafast TED recently observed after medium-dose B implantation. In that case there are enough B atoms to trap a large proportion of interstitials in Si---B clusters, and the remaining interstitials contribute to TED without passing through an intermediate {113} defect stage. The data on the ultrafast TED pulse allows us to extract lower limits for the diffusivities of the Si interstitial (DI > 2 × 10−10 cm2s−1) and the B interstitial(cy) defect (DBi > 2 × 10−13 cm2s−1) at 700°C.  相似文献   

11.
Sapphire single crystals were implanted at room temperature with 180 keV manganese ions to fluences up to 1.8 × 1017 cm−2. The samples were annealed at 1000 °C in oxidizing or reducing atmosphere. Surface damage was observed after implantation of low fluences, the amorphous phase being observed after implantation of 5 × 1016 cm−2, as seen by Rutherford backscattering spectroscopy under channelling conditions. Thermal treatments in air annealed most of the implantation related defects and promoted the redistribution of the manganese ions, in a mixed oxide phase. X-ray diffraction studies revealed the presence of MnAl2O4. On the contrary, similar heat treatments in vacuum led to enhanced out diffusion of Mn while the matrix remained highly damaged. The analysis of laser induced luminescence performed after implantation showed the presence of an intense red emission.  相似文献   

12.
In order to obtain Pleurotus ferulae with high temperature tolerance,mycelium mono-cells of wild type strain ACK was treated by nitrogen ion(5~30 keV,1.5×1015~1.5×1016cm-12)implantation,and mutant CGMCC1762 was selected through auxotrophy screening method,which was Lys.VB6 auxotrophy stress with high temperature.We found that during riper period the surface layer mycelium of the mutant was not aging neither grew tegument even above 30℃.The mycelium endurable temperature of the mutant was increased 70℃ compared with that of the wild type strain.The fruiting bodies growth temperature of the mutant was 16-20℃ in daytime and was 6~12℃ at night.The highest growth temperature of fruiting bodies of the mutant Was increased by 5℃ than that of original strain.Through three generation investigation,we found that the mutant CGMCC1762 was stable with high temperature tolerance.  相似文献   

13.
The aim of this experiment was to explore the possibility to convert the Si-overlayer of a SIMOX wafer into 3C-SiC by carbon implantation. In a first attempt carbon was implanted at a temperature 1030°C and energy 100 keV to a dose of 2.5 × 1017 C+ cm−2. The SIMOX was covered by a thick thermal oxide. Cross-section TEM observations on the implanted specimen reveal that carbon is concentrated mainly at the Si/SiO2 interfaces at the front and back face of the Si-overlayer forming continuous but highly defected 3C-SiC layers which are in epitaxial relation with the Si matrix. The implanted carbon has the tendency to migrate from the SiO2 and Si to the SiO2/Si interfaces to form SiC there.  相似文献   

14.
In the present study, a 500 Å thin Ag film was deposited by thermal evaporation on 5% HF etched Si(1 1 1) substrate at a chamber pressure of 8×10−6 mbar. The films were irradiated with 100 keV Ar+ ions at room temperature (RT) and at elevated temperatures to a fluence of 1×1016 cm−2 at a flux of 5.55×1012 ions/cm2/s. Surface morphology of the Ar ion-irradiated Ag/Si(1 1 1) system was investigated using scanning electron microscopy (SEM). A percolation network pattern was observed when the film was irradiated at 200°C and 400°C. The fractal dimension of the percolated pattern was higher in the sample irradiated at 400°C compared to the one irradiated at 200°C. The percolation network is still observed in the film thermally annealed at 600°C with and without prior ion irradiation. The fractal dimension of the percolated pattern in the sample annealed at 600°C was lower than in the sample post-annealed (irradiated and then annealed) at 600°C. All these observations are explained in terms of self-diffusion of Ag atoms on the Si(1 1 1) substrate, inter-diffusion of Ag and Si and phase formations in Ag and Si due to Ar ion irradiation.  相似文献   

15.
Large enhancement in electrical conductivity from <10−10 S cm−1 to 4 × 10−2 S cm−1 was achieved in polycrystalline 12CaO · 7Al2O3 (p-C12A7) thin films by hot Au+ implantation at 600 °C and subsequent ultraviolet (UV) light illumination. Although the as-implanted films were transparent and insulating, the subsequent UV-light illumination induced persistent electronic conduction and coloration. A good correlation was found between the concentration of photo-induced F+-like centers (a cage trapping an electron) and calculated displacements per atom, indicating that the hot Au+ implantation extruded free O2− ions from the cages in the p-C12A7 films by kick-out effects and left electrons in the cages. These results suggest that H ions are formed by the Au+ implantation through the decomposition of preexisting OH ions. Subsequent UV-light illumination produced F+-like centers via photoionization of the H ions, which leads to the electronic conduction and coloration.  相似文献   

16.
The rate of the uranium-water vapour reaction has been measured between 30 and 80°C. The measured reaction rate obeys the rate equation: k = 3.0 × 109r1/2 exp(−15.5 kcal/RT) mg U/cm 2 H = 4.0 × 108r exp(−15.5 kcal/RT) mg weight gain/cm2 h, where r is the fractional relative humidity.

This rate equation agrees remarkably well with the literature equation which was derived from much more limited experimental evidence and so the present equation is preferred.  相似文献   


17.
Low-cycle fatigue tests were carried out in air in a wide temperature range from 20 to 650 °C with strain rates of 3.2 × 10−5–1 × 10−2 s−1 for type 316L stainless steel to investigate dynamic strain aging (DSA) effect on the fatigue resistance. The regime of DSA was evaluated using the anomalies associated with DSA and was in the temperature range of 250–550 °C at a strain rate of 1 × 10−4 s−1, in 250–600 °C at 1 × 10−3 s−1, and in 250–650 °C at 1 × 10−2 s−1. The activation energies for each type of serration were about 0.57–0.74 times those for lattice diffusion indicating that a mechanism other than lattice diffusion is involved. It seems to be reasonable to infer that DSA is caused by the pipe diffusion of solute atoms through the dislocation core. Dynamic strain aging reduced the crack initiation and propagation life by way of multiple crack initiation, which comes from the DSA-induced inhomogeneity of deformation, and rapid crack propagation due to the DSA-induced hardening, respectively.  相似文献   

18.
We summarize the diametral creep results obtained in the MR reactor of the Kurchatov Institute of Atomic Energy on zirconium-2.5 wt% niobium pressure tubes of the type used in RBMK-1000 power reactors. The experiments that lasted up to 30 000 h cover a temperature range of 270 to 350°C, neutron fluxes between 0.6 and 4.0 ×1013 n/cm2 · s (E > 1 MeV) and stresses of up to 16 kgf/mm2. Diametral strains of up to 4.8% have been measured. In-reactor creep results have been analyzed in terms of thermal and irradiation creep components assuming them to be additive. The thermal creep rate is given by a relationship of the type εth = A1 exp [(A2 + A t) T] and the irradiation component by εrad = Atø(TA5), where T = temperature, σt = hoop stress, ø = neutron flux and a1 to A5 are constants. Irradiation growth experiments carried out at 280° C on specimens machined from pressure tubes showed a non-linear dependence of growth strain on neutron fluence up to neutron fluences of 5 × 1020 n/cm2. The significance of these results to the elongation of RBMK reactor pressure tubes is discussed.  相似文献   

19.
Xe+ ion implantation with 200 keV was completed at room temperature up to a fluence of 1 × 1017 ion/cm2 in yttria-stabilized zirconia (YSZ) single crystals. Optical absorption and X-ray photoelectron spectroscopy (XPS) were used to characterize the changes of optical properties and charge state in the as-implanted and annealed crystals. A broad absorption band centered at 522 or 497 nm was observed in the optical absorption spectra of samples implanted with fluences of 1 × 1016 ion/cm2 and 1 × 1017 ion/cm2, respectively. These two absorption bands both disappeared due to recombination of color centers after annealing at 250 °C. XPS measurements showed two Gaussian components of O1s spectrum assigned to Zr–O and Y–O, respectively, in YSZ single crystals. After ion implantation, these two peaks merged into a single peak with the increasing etching depth. However, this single peak split into two Gaussian components again after annealing at 250 °C. The concentration of Xe decreased drastically after annealing at 900 °C. And the XPS measurement barely detected the Xe. There was no change in the photoluminescence of YSZ single crystals with a fluence of 1 × 1017 ion/cm2 after annealing up to 900 °C.  相似文献   

20.
Polycrystalline molybdenum was irradiated in the hydraulic tube facility at the High Flux Isotope Reactor to doses ranging from 7.2 × 10−5 to 0.28 dpa at 80 °C. As-irradiated microstructure was characterized by room-temperature electrical resistivity measurements, transmission electron microscopy (TEM) and positron annihilation spectroscopy (PAS). Tensile tests were carried out between −50 and 100 °C over the strain rate range 1 × 10−5 to 1 × 10−2 s−1. Fractography was performed by scanning electron microscopy (SEM), and the deformation microstructure was examined by TEM after tensile testing. Irradiation-induced defects became visible by TEM at 0.001 dpa. Both their density and mean size increased with increasing dose. Submicroscopic three-dimensional cavities were detected by PAS even at 0.0001 dpa. The cavity density increased with increasing dose, while their mean size and size distribution was relatively insensitive to neutron dose. It is suggested that the formation of visible dislocation loops was predominantly a nucleation and growth process, while in-cascade vacancy clustering may be significant in Mo. Neutron irradiation reduced the temperature and strain rate dependence of the yield stress, leading to radiation softening in Mo at lower doses. Irradiation had practically no influence on the magnitude and the temperature and strain rate dependence of the plastic instability stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号