首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 78 毫秒
1.
邓潘  张天舒  陈卫  刘洋 《红外与激光工程》2017,46(7):730003-0730003(6)
为研究中层大气分布情况,采用自行研制的532 nm瑞利(Rayleigh)散射激光雷达,对合肥地区(31.90 N,117.170 E)25~40 km高度范围内的大气密度和温度廓线分布进行观测。将瑞利散射激光雷达所测结果与NRLMSISE-00大气模型数据进行对比,以验证瑞利散射激光雷达性能及数据处理方法的可靠性。通过数据对比得出,在25~40 km高度范围内,瑞利散射激光雷达获得的大气密度值与NRLMSISE-00大气模型密度值的比值为0.99~1.03;瑞利散射激光雷达所测温度值与NRLMSISE-00大气模型数据的温度偏差均值约为2.8 K,其中38 km以下两者温度偏差约为1.6 K。数据对比说明,瑞利散射激光雷达观测值与NRLMSISE-00大气模型数据具有较一致的密度分布特征和温度分布特征,瑞利散射激光雷达的观测结果能够较真实地反映合肥上空25~40 km高度范围内的大气密度和温度分布。  相似文献   

2.
用瑞利散射激光雷达探测平流层中上部温度   总被引:6,自引:1,他引:6  
介绍了一台用于平流层中上部温度探测的双波长激光雷达 ,分析了数据处理方法及其过程。该激光雷达获得的结果与NOAA NMC及MSISE 90模式资料对比表明 ,在 30~ 40km高度范围内三者反映了较一致的温度分布特征。一般情况下 30~ 40km范围内它们的温度偏差小于 3K ;低层 30km以下很可能主要受气溶胶的影响 ,相对偏差小于 6K。  相似文献   

3.
瑞利-拉曼散射激光雷达探测大气温度分布   总被引:6,自引:4,他引:6  
介绍一台用于夜晚探测大气温度分布的L625瑞利-拉曼(Rayleigh-Raman)散射激光雷达。采用Nd:YAG激光器三倍频输出355nm作为发射激光,利用弱光子计数技术检测大气中分子的瑞利散射和N2分子振动拉曼散射回波,分析得到了平流层和对流层中上部大气温度的垂直分布廓线。其观测结果分别与HALOE/UARS卫星和无线电气象探空仪结果进行了对比分析。其中,激光雷达观测的平流层温度与HALOE卫星的结果对比表明,它们在高度25~65km内显示出较好的一致性,20个夜晚的平均温度差别基本上小于2K。激光雷达与无线电气象探空仪探测的对流层温度在高度为5~18km内反映了较为一致的分布趋势,15个夜晚的平均温度差别在6~16.5km高度内小于3K。这些结果表明,L625瑞利-拉曼散射激光雷达观测数据可靠,可用于大气温度分布的常规观测和分析研究。  相似文献   

4.
介绍了瑞利激光雷达的基本结构,描述了使用瑞利散射激光雷达探测平流层和中间层低部大气温度的数据处理方法,构建同时包含标准大气模式温度信息和实际探测背景噪声的模拟数据,对此模拟数据进行背景扣除、平滑去噪、参考点选取等计算分析,探讨提高温度反演精度的实用算法。并应用此数据处理方法对瑞利激光雷达的实际测量数据进行了计算处理,将计算结果与模式CIRA86、HALOE卫星数据进行对比分析,反演高度30~45km时误差1~3K,45~65km误差大约在2~5K,65~70km误差<10K。  相似文献   

5.
瑞利激光雷达探测大气温度算法分析   总被引:1,自引:0,他引:1  
介绍了瑞利激光雷达的基本结构,描述了使用瑞利散射激光雷达探测平流层和中间层低部大气温度的数据处理方法,构建同时包含标准大气模式温度信息和实际探测背景噪声的模拟数据,对此模拟数据进行背景扣除、平滑去噪、参考点选取等计算分析,探讨提高温度反演精度的实用算法。并应用此数据处理方法对瑞利激光雷达的实际测量数据进行了计算处理,将计算结果与模式CIRJA86、HALOE卫星数据进行对比分析,反演高度30~45km时误差1—3K,45~65km误差大约在2—5K,65—70km误差〈10K。  相似文献   

6.
通过等效通道选择原理分析,认为通过构建等效通道,可使其权重函数峰值高度高于目前美国DOAA气象卫星HIRS/2第一通道的峰值高度,通过大量的模拟计算试验,证实了这一原理实现的可能性,进一步利用15μmCO2吸收带的7个温度探测通道的所选择的等效通道一起反2大气温度垂直分布,结果表明增加一个等效通道对温度廓线反演有一定改善,特别是对平流层(50-2hPa)温度反演,平均每层精度提高的0.27K。  相似文献   

7.
班超  潘蔚琳  王睿  黄文涛  柳付超  王章军  方欣  程学武  胡红桥 《红外与激光工程》2021,50(3):20210010-1-20210010-8
一套瑞利散射激光雷达已部署在南极中山站(69.4° S, 76.4° E)用于探测大气密度和温度。该激光雷达的光源为二倍频Nd:YAG脉冲激光器,重复频率30 Hz,单脉冲能量约400 mJ,同时使用一台0.8 m口径的垂直指向望远镜作为接收望远镜,可以探测平流层上层及中间层下层(USLM)区域的大气密度及温度廓线。在垂直分辨率为300 m,时间分辨率为30 min的情况下,由光子噪声引起的大气密度和温度测量不确定性分别小于1.5%和1 K。该激光雷达自2020年3月开始在中山站开展常规观测,有助于研究极区USLM区域的大气密度、温度的变化特征以及大气波动的传播特性。  相似文献   

8.
介绍了瑞利-拉曼-米散射激光雷达的基本结构与瑞利散射温度反演原理,通过分析对比获得了适合瑞利散射信号的小波分解层数及阈值选取规则,并分别使用小波硬阈值法与软阈值法对信号进行处理,相比而言软阈值法具有更好的降噪效果。利用上述算法反演出南京上空平流层28~46km的温度廓线,将结果与MSISE-90大气模式及AIRS卫星数据进行比对,均表现较好的一致性,验证了小波降噪在瑞利激光雷达温度反演算法中的可靠性。在算法研究的基础上,反演了2009年12月19日19时20分至20时20分连续观测的数据,表明在短时间内平流层温度总体趋势稳定;并对2009年10月至12月的观测数据进行分析处理,得到南京上空平流层月平均温度廓线,表明南京上空的平流层温度在冬季变化不明显。  相似文献   

9.
大气密度的准确测量在气象、航空航天等领域都有重要的意义.本文介绍了一种适合于机载的基于紫外激光(波长266 nm)瑞利散射测量大气密度的系统,并针对平流层下层大气进行了分析、计算,讨论了激光器、ICCD参数以及系统结构对于测量结果的影响.  相似文献   

10.
刘玉丽 《激光技术》2018,42(4):541-544
为了研制一种测量边界层大气温度的激光雷达,采用氮气和氧气的转动喇曼谱的强度比反演大气温度垂直分布的方法,对转动喇曼激光雷达系统进行了理论分析与实验研究,取得了边界层内的大气温度数据。结果表明,该激光雷达测量的大气温度在0km~2.5km处与大气模式表现出了较好的一致性,激光能量为100mJ,测量时间约为17min,垂直分辨率为7.5m;2.5km处信号随机起伏引起的统计误差达到1K,可以对边界层内2.5km以下的大气温度进行高精度测量;如果要使测量的高度进一步增加,可以增大激光脉冲的能量或选用口径大的望远镜。这对探测边界层大气温度的转动喇曼激光雷达系统的研制提供了有益的指导。  相似文献   

11.
提出了一种新的激光雷达常数的确定方法.利用在大气气溶胶水平分布均匀的天气条件下,在无几何因子影响的区域通过激光雷达消光后向散射比和美国大气模式的数值计算得到激光雷达常数.理论上分析了误差来源,由激光雷达消光后向散射比引起最大的误差小于12.27%.最后根据测量信号计算得到本系统激光雷达常数为600668.2 sr·km3,其标准偏差小于13%.不同时刻的测量结果显示了很好的一致性,表明该方法是可行的.激光雷达常数的获取为评估激光系统以及激光雷达方程的参数反演带来的便利.  相似文献   

12.
介绍了综合使用瑞利、拉曼、米散射三种技术的激光雷达的基本结构与拉曼散射温度反演原理。对其中的拉曼回波信号进行了背景噪声扣除、滑动平均和小波变换降噪,在此基础上分析了气溶胶对拉曼激光雷达温度廓线反演的影响。利用上述激光雷达信号处理方法对南京上空的温度廓线进行观测,反演了2010年11月19日18时53分至19时35分连续观测的数据。反演的温度廓线表明,观测开始至观测结束,5.5 km处的温度变化为2 K的波动变化;对2010年11月整月的观测数据进行分析处理,得到11月份上中下三旬的平均温度廓线。在10 km高度处,下旬温度比上旬温度低4 K,随着入冬的进程,低空段的大气温度递减率有明显增大的趋势;11月的月平均温度在5~10 km处低于模式值4 K左右,并且两者几乎平行,说明11月份5~10 km各高度温度比模式均低4 K左右。  相似文献   

13.
针对转动拉曼测温激光雷达数据采集系统中光子计数卡各通道阈值及延时之间的误差,结合光子计数卡的工作原理以及方波信号幅值电压的波动性,构建阈值测量系统,以方波信号作为通道的输入,通过调整阈值电压设定值,使计数值达到最大的方法对通道的阈值误差进行了测量,并对其进行了曲线拟合。构建延时测量系统,测量各通道之间的延时差,并提出了对其进行补偿的方案。对阈值误差测量数据及拟合结果进行了分析,分析结果表明通过拟合曲线对各通道阈值电压进行设定,可更快地设置所要求的阈值电压。对延时差的补偿可以使温度分布廓线定位精度提高约10m。  相似文献   

14.
对于准同时发射两个波长激光的差分激光雷达,在测量时间内,大气波动对两个波长的激光回波信号的影响可能是不相同的.已有的大气修正方法是基于两个波长激光回波信号受到相同大气波动的基础之上,不适用于这种准同时的工作方式.提出了一种新的大气后向散射系数项修正方法,即利用Klett积分法,分别算出差分吸收激光雷达中两个波长激光的大气后向散射系数,得出大气后向散射系数修正项.这种方法应用于AML-2车载激光雷达测量臭氧的数据处理中,比对实验和大量的外场测量结果表明,这种修正方法是可行的、合理的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号